首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   110篇
  国内免费   15篇
耳鼻咽喉   10篇
儿科学   16篇
妇产科学   12篇
基础医学   242篇
口腔科学   43篇
临床医学   47篇
内科学   175篇
皮肤病学   13篇
神经病学   117篇
特种医学   7篇
外科学   197篇
综合类   46篇
现状与发展   1篇
预防医学   21篇
眼科学   20篇
药学   77篇
中国医学   11篇
肿瘤学   95篇
  2024年   2篇
  2023年   20篇
  2022年   22篇
  2021年   74篇
  2020年   42篇
  2019年   57篇
  2018年   51篇
  2017年   55篇
  2016年   37篇
  2015年   46篇
  2014年   74篇
  2013年   93篇
  2012年   56篇
  2011年   66篇
  2010年   39篇
  2009年   50篇
  2008年   63篇
  2007年   47篇
  2006年   41篇
  2005年   37篇
  2004年   35篇
  2003年   26篇
  2002年   18篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   12篇
  1997年   15篇
  1996年   13篇
  1995年   9篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   3篇
排序方式: 共有1150条查询结果,搜索用时 31 毫秒
61.
The increased survival rate of stroke patients has led to the higher incidences of post‐stroke depression. Carnosic acid has the ability to cross blood brain barrier with good neuro‐modulatory actions. Recently, inclined level of fibroblast growth factor 9 (FGF9) in the postmortem brain of the depressed patients was noted. Therefore, in the present study, the effect of carnosic acid on post‐stroke depression‐like behavior, and the expression of FGF9 were evaluated. After 3 weeks of middle carotid artery occlusion in Sprague Dawley rats, carnosic acid (20 and 40 mg/kg) was administered for 2 weeks. Sucrose preference test, forced swimming test, and open field test were performed and hippocampi were analyzed for FGF9 and FGFR‐3. In comparison to post‐stroke depressed rats, carnosic acid increased the sucrose preference, and reduced the immobility time of the rats by ~2×. The speed and distance‐covered were also increased. At 40 mg/kg, FGF9 was reduced by ~3× while FGFR‐3/Actin was increased by ~1.5×. Altogether results suggest anti‐depressant‐like activity of carnosic acid in post‐stroke depressed rats with decreased expression of hippocampal FGF9.  相似文献   
62.
Membrane Alpha Klotho (α-klotho) is expressed in the kidney and functions as a co-receptor of FGF receptors (FGFRs) to activate specific fibroblast growth factor 23 (FGF23) signal pathway. FGF23 is produced in bones and participates in mineral homeostasis. The extracellular domain of transmembrane αklotho can be cleaved by proteases and released into the circulation as soluble α-klotho. Klotho deficiency is a pathogenic factor for chronic kidney disease progression and cardiovascular diseases. The FGF23 excess may also contribute to cardiovascular diseases where its pathogenic effect acts via the FGFR4 and independently of α-klotho. The decline in serum α-klotho followed by a rise in serum FGF23 at an early stage of chronic kidney disease can serve as a robust predictor for risk of cardiovascular diseases and mortality in both CKD patients and the general population. The first randomized trials suggest the possibility to reduce FGF23 excess in chronic kidney disease by controlling the phosphate serum using phosphate binders and reducing PTH levels with calcimimetic drug. New strategies emerge, including the administration of α-klotho recombinant and the use of epidrugs in order to correct the klotho deficiency. The FGR4 inhibitors are promising to limit the development of left ventricular hypertrophy linked to FGF23 excess. Finally, a better understanding of the molecular mechanisms of FGF23/α-klotho axis will allow us to find new strategic approaches and improve the CKD patient's management and their outcomes.  相似文献   
63.
64.
Familial tumoral calcinosis is characterized by ectopic calcifications due to persistent hyperphosphatemia. The most common genetic cause of the disease is mutations in GALNT3, encoding a glycosyltransferase involved in a posttranslational modification of fibroblast growth factor 23 (FGF23). The Galnt3 knockout mouse we developed was hyperphosphatemic due to low intact Fgf23 levels, but did not develop any apparent calcifications on a standard rodent diet. We therefore tested the hypothesis that a further challenge with a high phosphate diet could induce ectopic calcifications in Galnt3 knockout mice. Mice were fed either normal (0.6%) or high (1.65%) phosphate diet for 20 weeks beginning from weaning at 3 weeks. The high phosphate diet did not affect serum phosphorus concentration. However, regardless of the dietary phosphate contents, serum phosphorus levels were consistently elevated in Galnt3 knockout mice. The mice on the high phosphate diet had slightly low serum calcium, but significantly high alkaline phosphatase, parathyroid hormone (PTH), and calcium in the kidney. Although none of Galnt3 knockout mice on the normal phosphate diet developed calcifications, calcifications appeared in approximately one‐half of the mice on the high phosphate diet by 12 weeks. Calcified masses were most often found around the neck and on the back and as large as 9.9 mm in length. These data indicate that dietary phosphate load has major impact on the development of ectopic calcifications in tumoral calcinosis. © 2014 American Society for Bone and Mineral Research.  相似文献   
65.
During the evolution of skeletons, terrestrial vertebrates acquired strong bones made of calcium–phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate ions, they created the bone when and where they wanted simply by providing a cue for precipitation. To secure this strategy, they acquired a novel endocrine system to strictly control the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor–23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion, thereby maintaining phosphate homeostasis. The FGF23–Klotho endocrine system, when disrupted in mice, results in hyperphosphatemia and vascular calcification. Besides, mice lacking Klotho or FGF23 suffer from complex aging-like phenotypes, which are alleviated by placing them on a low-phosphate diet, indicating that phosphate is primarily responsible for the accelerated aging. Phosphate acquires the ability to induce cell damage and inflammation when precipitated with calcium. In the blood, calcium–phosphate crystals are adsorbed by serum protein fetuin-A and prevented from growing into large precipitates. Consequently, nanoparticles that comprised calcium–phosphate crystals and fetuin-A, termed calciprotein particles (CPPs), are generated and dispersed as colloids. CPPs increase in the blood with an increase in serum phosphate and age. Circulating CPP levels correlate positively with vascular stiffness and chronic non-infectious inflammation, raising the possibility that CPPs may be an endogenous proaging factor. Terrestrial vertebrates with the bone made of calcium–phosphate may be destined to age due to calcium–phosphate in the blood.  相似文献   
66.
67.
The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of α-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.

The large family of fibroblast growth factors (FGFs) has been known for its important roles in regulating critical cellular processes during embryonic development and homeostasis of normal tissues (13). While most FGFs act as cytokines or hormonelike proteins that mediate their pleiotropic cellular processes by binding to cell surface receptors endowed with intrinsic tyrosine kinase activity (FGFRs), a subfamily of FGFs (FGF 11–14) was shown to be uniquely expressed intracellularly. The mechanism of action and physiological roles of intracellular FGFs are poorly understood (46).In contrast to most receptor tyrosine kinases (RTKs) that are activated by a single ligand molecule that binds with high affinity to the extracellular domain of its cognate RTK with a dissociation constant in the subnanomolar range, the binding affinities of FGFs to FGFRs are, at least, 1,000–10,000 fold weaker with dissociation constants in the submicromolar range (79). The weak binding affinities toward FGFRs of the largest subfamily of FGF molecules designated canonical FGFs are offset by interactions with cell surface heparan sulfate proteoglycans (HSPGs). Both biochemical and structural studies revealed how multiple interactions between heparin or HSPG with both FGF and FGFR mediate tight association enabling robust receptor dimerization and tyrosine kinase activation (10, 11).The three endocrine FGFs, FGF19, 21, and 23 are part of an additional subfamily of FGF molecules. Endocrine FGFs function as circulating hormones that play essential roles in the control of various metabolic processes (12). In addition to the conserved FGF-domain found in all FGF ligands, endocrine FGFs contain unique C-terminal tails (CTs) composed of 46 (FGF19), 34 (FGF21), or 89 (FGF23) amino acids that serve as specific and high-affinity ligands for the two members of the Klotho family of surface receptors. It was shown that KLA serves as a high-affinity receptor for FGF23 while β-Klotho (KLB) functions as a high-affinity surface receptor for both FGF19 and FGF21 (1316). Structural analyses of free and ligand-occupied Klotho proteins revealed the molecular basis underlying the specificity and high affinity of KLA and KLB toward endocrine FGFs. It also showed that Klotho proteins function as the primary receptors for endocrine FGFs whereas FGFR functions as a catalytic subunit that mediates cell signaling via its tyrosine kinase domain (8, 17, 18). Accordingly, endocrine FGFs stimulate their cellular responses by forming a ternary complex with Klotho proteins and FGFRs to induce receptor dimerization, tyrosine kinase activation, and cell signaling. Unlike FGFRs that are ubiquitously expressed, the expressions of KLA and KLB are restricted to specific tissues and organs to enable precise targeting of endocrine FGFs to stimulate their physiological responses in specific cells and tissues (1922). The ability of endocrine FGFs to circulate is attributed to the loss of conserved heparin binding sites that are essential for the function of canonical FGFs (23).FGF23 is a 32-kDa glycoprotein, mainly produced in the bone by osteoblasts and osteocytes, that serve as a key hormone in regulating phosphate homeostasis, vitamin D, and calcium metabolism (24, 25). Circulating levels of physiologically active FGF23 are regulated by proteolytic cleavage to produce a FGF23 molecule lacking its unique CT (26, 27). The cleavage resulting in FGF23 inactivation prevents assembly and stimulation of the FGF23/FGFR/KLA complex. Additionally, the processing of FGF23 includes several posttranslational modifications which affect its stability and susceptibility toward proteolysis. Secreted FGF23 was shown to be O-glycosylated in its C-terminal cleavage site (28, 29) to protect the protein from C-terminal cleavage. In order for the cleavage site to be exposed, FGF23 has to be first phosphorylated in this region (30). Phosphorylation prevents glycosylation and exposes the cleavage site to proteolysis.In this paper, we demonstrate that the CT of FGF23 contains two tandem repeats and that each repeat binds with high affinity to KLA. This contrasts with FGF19 and FGF21, whose CTs contain a single binding site to KLB. Engineered FGF23 variants containing each of the two repeats individually or both repeats bind specifically to KLA and stimulate cell signaling to a similar extent. We also demonstrate that two cysteine residues flanking the second repeat form a disulfide bridge in FGF23 secreted by mammalian cells. However, both oxidized or unbridged forms of FGF23 exhibit similar KLA binding characteristics and similar cellular stimulatory activities. We also show that FGF23-WT induces mitogen-activated protein kinase (MAPK) activation in cells expressing chimeric KLA-FGFR proteins and use TIRFM imaging of individual KLA molecules on the cell surface to demonstrate that FGF23 has the capacity for simultaneous binding to two KLA molecules. These insights reveal the complexity of FGF23 regulation and its role in assembling the FGF23/FGFR/KLA signaling complex.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号