首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34986篇
  免费   2872篇
  国内免费   1504篇
耳鼻咽喉   326篇
儿科学   488篇
妇产科学   391篇
基础医学   5524篇
口腔科学   3018篇
临床医学   4439篇
内科学   4351篇
皮肤病学   702篇
神经病学   1494篇
特种医学   1673篇
外国民族医学   8篇
外科学   5256篇
综合类   4653篇
现状与发展   10篇
预防医学   984篇
眼科学   525篇
药学   2237篇
  10篇
中国医学   1142篇
肿瘤学   2131篇
  2024年   62篇
  2023年   531篇
  2022年   669篇
  2021年   1141篇
  2020年   1224篇
  2019年   1164篇
  2018年   1203篇
  2017年   1140篇
  2016年   1182篇
  2015年   1248篇
  2014年   2247篇
  2013年   3146篇
  2012年   1912篇
  2011年   2231篇
  2010年   1725篇
  2009年   1753篇
  2008年   1821篇
  2007年   1859篇
  2006年   1652篇
  2005年   1532篇
  2004年   1327篇
  2003年   1146篇
  2002年   854篇
  2001年   778篇
  2000年   583篇
  1999年   549篇
  1998年   433篇
  1997年   424篇
  1996年   373篇
  1995年   333篇
  1994年   297篇
  1993年   228篇
  1992年   248篇
  1991年   233篇
  1990年   200篇
  1989年   180篇
  1988年   178篇
  1987年   157篇
  1986年   131篇
  1985年   183篇
  1984年   141篇
  1983年   106篇
  1982年   133篇
  1981年   141篇
  1980年   123篇
  1979年   87篇
  1978年   73篇
  1977年   57篇
  1976年   76篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 50 毫秒
991.
Autologous airway epithelial cells have been used in clinical tissue‐engineered airway transplantation procedures with a view to assisting mucosal regeneration and restoring mucociliary escalator function. However, limited time is available for epithelial cell expansion due to the urgent nature of these interventions and slow epithelial regeneration has been observed in patients. Human airway epithelial cells can be expanded from small biopsies or brushings taken during bronchoscopy procedures, but the optimal mode of tissue acquisition from patients has not been investigated. Here, we compared endobronchial brushing and endobronchial biopsy samples in terms of their cell number and their ability to initiate basal epithelial stem cell cultures. We found that direct co‐culture of samples with 3T3‐J2 feeder cells in culture medium containing a Rho‐associated protein kinase inhibitor, Y‐27632, led to the selective expansion of greater numbers of basal epithelial stem cells during the critical early stages of culture than traditional techniques. Additionally, we established the benefit of initiating cell cultures from cell suspensions, either using brushing samples or through enzymatic digestion of biopsies, over explant culture. Primary epithelial cell cultures were initiated from endobronchial biopsy samples that had been cryopreserved before the initiation of cell cultures, suggesting that cryopreservation could eliminate the requirement for close proximity between the clinical facility in which biopsy samples are taken and the specialist laboratory in which epithelial cells are cultured. Overall, our results suggest ways to expedite epithelial cell preparation in future airway cell therapy or bioengineered airway transplantation procedures.  相似文献   
992.
Nonunion treatment has a high rate of success, although recalcitrant nonunion may determine the need for amputation. Therefore, new treatment options are continuously investigated in order to further reduce the risk of nonunion recurrence. This study aimed to (a) develop a new large animal model for bone atrophic nonunion and (b) compare the efficacy of demineralized bone matrix (DBM) and DBM in combination with mesenchymal stem cells (MSC) in the new nonunion model. The new model consists of a noncritical, full‐thickness segmental defect created in the sheep tibia, stabilized by an intramedullary nail, and involves the creation of a locally impaired blood supply achieved through periosteum excision and electrocauterization of the stump ends. Six weeks after defect creation, lack of hard tissue callus and established nonunion was observed in all operated tibiae both by radiographic and clinical evaluation. Nonunion was treated with allogeneic DBM or autologous MSC cultivated on DBM particles (DBM + MSC) for 1 day before implantation. Twelve weeks after treatment, radiographic, microtomographic, histologic, and histomorphometric analysis showed the formation of bone callus in DBM group, whereas the fracture healing appeared at an early stage in DBM + MSC group. Torsional strength and stiffness of the DBM group appeared higher than those of DBM + MSC group, although the differences were not statistically significant. In conclusion, a new sheep bone nonunion model resembling the complexity of the clinical condition was developed. DBM is an effective option for nonunion treatment, whereas MSC do not improve the healing process when cultivated on DBM particles before implantation.  相似文献   
993.
Bone metastases frequently occur in the advanced stages of breast cancer. At this stage, the disease is deemed incurable. To date, the mechanisms of breast cancer‐related metastasis to bone are poorly understood. This may be attributed to the lack of appropriate animal models to investigate the complex cancer cell–bone interactions. In this study, two established tissue‐engineered bone constructs (TEBCs) were applied to a breast cancer‐related metastasis model. A cylindrical medical‐grade polycaprolactone‐tricalcium phosphate scaffold produced by fused deposition modelling (scaffold 1) was compared with a tubular calcium phosphate‐coated polycaprolactone scaffold fabricated by solution electrospinning (scaffold 2) for their potential to generate ectopic humanised bone in NOD/SCID mice. While scaffold 1 was found not suitable to generate a sufficient amount of ectopic bone tissue due to poor ectopic integration, scaffold 2 showed excellent integration into the host tissue, leading to bone formation. To mimic breast cancer cell colonisation to the bone, MDA‐MB‐231, SUM1315, and MDA‐MB‐231BO breast cancer cells were cultured in polyethylene glycol‐based hydrogels and implanted adjacent to the TEBCs. Histological analysis indicated that the breast cancer cells induced an osteoclastic reaction in the TEBCs, demonstrating analogies to breast cancer‐related bone metastasis seen in patients.  相似文献   
994.
Osteoarthritis (OA) is a painful disease, characterized by progressive surface erosion of articular cartilage. The use of human articular chondrocytes (hACs) sourced from OA patients has been proposed as a potential therapy for cartilage repair, but this approach is limited by the lack of scalable methods to produce clinically relevant quantities of cartilage‐generating cells. Previous studies in static culture have shown that hACs co‐cultured with human mesenchymal stem cells (hMSCs) as 3D pellets can upregulate proliferation and generate neocartilage with enhanced functional matrix formation relative to that produced from either cell type alone. However, because static culture flasks are not readily amenable to scale up, scalable suspension bioreactors were investigated to determine if they could support the co‐culture of hMSCs and OA hACs under serum‐free conditions to facilitate clinical translation of this approach. When hACs and hMSCs (1:3 ratio) were inoculated at 20,000 cells/ml into 125‐ml suspension bioreactors and fed weekly, they spontaneously formed 3D aggregates and proliferated, resulting in a 4.75‐fold increase over 16 days. Whereas the apparent growth rate was lower than that achieved during co‐culture as a 2D monolayer in static culture flasks, bioreactor co‐culture as 3D aggregates resulted in a significantly lower collagen I to II mRNA expression ratio and more than double the glycosaminoglycan/DNA content (5.8 vs. 2.5 μg/μg). The proliferation of hMSCs and hACs as 3D aggregates in serum‐free suspension culture demonstrates that scalable bioreactors represent an accessible platform capable of supporting the generation of clinical quantities of cells for use in cell‐based cartilage repair.  相似文献   
995.
Endothelial progenitors found among the peripheral blood (PB) mononuclear cells (MNCs) are interesting cells for their angiogenic properties. Mesenchymal stromal cells (MSCs) in turn can produce proangiogenic factors as well as differentiate into mural pericytes, making MSCs and MNCs an attractive coculture setup for regenerative medicine. In this study, human bone marrow‐derived MSCs and PB‐derived MNCs were cocultured in basal or osteoblastic medium without exogenously supplied growth factors to demonstrate endothelial cell, pericyte and osteoblastic differentiation. The expression levels of various proangiogenic factors, as well as endothelial cell, pericyte and osteoblast markers in cocultures were determined by quantitative polymerase chain reaction. Immunocytochemistry for vascular endothelial growth factor receptor‐1 and α‐smooth muscle actin as well as staining for alkaline phosphatase were performed after 10 and 14 days. Messenger ribonucleic acid expression of endothelial cell markers was highly upregulated in both basal and osteoblastic conditions after 5 days of coculture, indicating an endothelial cell differentiation, which was supported by immunocytochemistry for vascular endothelial growth factor receptor‐1. Stromal derived factor‐1 and vascular endothelial growth factor were highly expressed in MSC‐MNC coculture in basal medium but not in osteoblastic medium. On the contrary, the expression levels of bone morphogenetic protein‐2 and angiopoietin‐1 were significantly higher in osteoblastic medium. Pericyte markers were highly expressed in both cocultures after 5 days. In conclusion, it was demonstrated endothelial cell and pericyte differentiation in MSC‐MNC cocultures both in basal and osteoblastic medium indicating a potential for neovascularization for tissue engineering applications.  相似文献   
996.
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.  相似文献   
997.

Background

Massage is a common treatment in complementary and integrative medicine. Deep tissue massage, a form of therapeutic massage, has become more and more popular in recent years. Hence, the use of massage generally and deep tissue massage specifically, should be evaluated as any other modality of therapy to establish its efficacy and safety.

Aim

To determine the definitions used for deep tissue massage in the scientific literature and to review the current scientific evidence for its efficacy and safety.

Methods

Narrative review.

Results

There is no commonly accepted definition of deep tissue massage in the literature. The definition most frequently used is the intention of the therapist. We suggest separating the definitions of deep massage and deep tissue massage as follows: deep massage should be used to describe the intention of the therapist to treat deep tissue by using any form of massage and deep tissue massage should be used to describe a specific and independent method of massage therapy, utilizing the specific set of principles and techniques as defined by Riggs: “The understanding of the layers of the body, and the ability to work with tissue in these layers to relax, lengthen, and release holding patterns in the most effective and energy efficient way possible within the client's parameters of comfort”.Heterogeneity of techniques and protocols used in published studies have made it difficult to draw any clear conclusions. Favorable outcomes may result from deep tissue massage in pain populations and patients with decreased range of motion. In addition, several rare serious adverse events were found related to deep tissue massage, probably as a result of the forceful application of massage therapy.

Conclusions

Future research of deep tissue massage should be based on a common definition, classification system and the use of common comparators as controls.  相似文献   
998.
999.
Pulsed Doppler (PW) and tissue Doppler imaging (TDI) measurements are part of every echocardiography examination for evaluation of left ventricular (LV) diastolic function and filling pressure. The purpose of this study was to summarize published data on normal values for PW and TDI measurements. A PubMed search was performed on the 10th of October 2016 to identify relevant articles. Studies were considered relevant if they included more than 200 healthy individuals. A total of 13 studies were identified. Of these, 13 studies with 7777 subjects reported PW measurement over the mitral valve, six studies with 4082 subjects reported PW measurement in the pulmonary vein and 10 studies with 5988 subjects reported TDI. We also report weighted mean values for 14 different variables. As expected, measurements varied with age. There were no major differences between men and women. In contrast, there was a large difference in reported values between studies, in corresponding age groups. This review therefore raises caution about relying on normal values from just one study.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号