首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   6篇
  国内免费   1篇
临床医学   1篇
内科学   1篇
皮肤病学   3篇
神经病学   1篇
综合类   4篇
药学   37篇
中国医学   4篇
肿瘤学   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
31.
32.
The diuretic drug amiloride and its analogues were found previously to be allosteric modulators of antagonist binding to A(2A) adenosine receptors. In this study, the possibility of the allosteric modulation by amiloride analogues of antagonist binding at A(1) and A(3) receptors, as well as agonist binding at A(1), A(2A), and A(3) receptors, was explored. Amiloride analogues increased the dissociation rates of two antagonist radioligands, [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one ([3H]PSB-11), from A(1) and A(3) receptors, respectively. Amiloride and 5-(N,N-dimethyl)amiloride (DMA) were more potent at A(1) receptors than at A(3) receptors, while 5-(N,N-hexamethylene)amiloride (HMA) was more potent at A(3) receptors. Thus, amiloride analogues are allosteric inhibitors of antagonist binding at A(1), A(2A), and A(3) adenosine receptor subtypes. In contrast to their effects on antagonist-occupied receptors, amiloride analogues did not affect the dissociation rates of the A(1) agonist [3H]N(6)-[(R)-phenylisopropyl]adenosine ([3H]R-PIA) from A(1) receptors or the A(2A) agonist [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine ([3H]CGS21680) from A(2A) receptors. The dissociation rate of the A(3) agonist radioligand [125I]N(6)-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide ([125I]I-AB-MECA) from A(3) receptors was decreased significantly by amiloride analogues. The binding modes of amiloride analogues at agonist-occupied and antagonist-occupied receptors differed markedly, which was demonstrated in all three subtypes of adenosine receptors tested in this study. The effects of the amiloride analogues on the action of the A(3) receptor agonist were explored further using a cyclic AMP functional assay in intact CHO cells expressing the human A(3) receptor. Both binding and functional assays support the allosteric interactions of amiloride analogues with A(3) receptors.  相似文献   
33.
34.
A novel series of 1-benzylquinazoline-2,4(1H,3H)-dione derivatives, 6a , b to 11a – e , was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT-116, and MCF-7 cells. Compounds 11b , 11e , and 11c were found to be the most potent derivatives of all tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with GI50 = 9.16 ± 0.8, 5.69 ± 0.4, 5.27 ± 0.2 µM, 9.32 ± 0.9, 6.37 ± 0.7, 5.67 ± 0.5 µM, and 9.39 ± 0.5, 6.87 ± 0.7, 5.80 ± 0.4 µM, respectively. These compounds exhibited nearly the same activity as sorafenib against HepG2 and HCT-116 cells and a higher activity against MCF-7 cells (GI50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). Also, these compounds displayed a lower activity than doxorubicin against HepG2 cells and a higher activity against HCT-116 and MCF-7 cells (GI50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). The most active antiproliferative derivatives, 6a , b , 8 , 9 , and 11a – e , were selected to evaluate their enzymatic inhibitory activity against VEGFR-2. Compounds 11b , 11e , and 11c potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.02, 0.12 ± 0.02, and 0.13 ± 0.02 µM, respectively, which are nearly equipotent as sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.  相似文献   
35.
Introduction: Mechanistic, translational and pharmacological studies led to the identification and discovery of the preferred localization, binding characteristics, structure and functional properties of α1-adrenoceptor (α1-AR) subtypes in the bladder neck, bladder and prostate gland. The evidence gathered on α1-ARs, provided a molecular platform for the development of subtype-selective antagonists, resulting in more effective approaches targeting those receptors for the treatment of outlet bladder obstruction and benign prostate hyperplasia.

Areas covered: Advances over the last decade in the design and optimization of Prazosin, Doxazosin and Terazosin quinazoline-based derivatives as α1-AR antagonists. Evidence on the metabolic and growth interference action by these agents, in addition to their smooth-muscle-relaxing effects. The new action recognition emerges from data on the inhibitory effect of quinazoline-based antagonists on primary tumor growth and progression to metastasis. In addition to the cellular findings in the prostate, functional validation and therapeutic effects of selected lead pharmaceutically optimized derivatives in the context of impairing vascularity and triggering tumor apoptosis.

Expert opinion: Knowledge on targeting intracellular signalling pathways driving the cellular response via an α1-AR-dependent and independent antagonistic action, must be invested towards the optimization of new agents that while bypassing AR, exhibit improved pharmacological efficacy against human cancer.  相似文献   
36.
Quinazoline has been reported to exhibit multiple bioactivities. The aim of this study was to discover new quinazoline derivatives with preventive effect on lipopolysaccharide‐induced acute lung injury via anti‐inflammatory actions. Thirty‐three 4‐amino quinazolin derivatives were synthesized and screened for anti‐inflammatory activities in lipopolysaccharide‐induced macrophages. The most potent four compounds, 6h, 6m, 6p , and 6q , were shown dose‐dependent inhibition against lipopolysaccharide‐induced TNF‐α and IL‐6 release. Then, the preliminary structure–activity relationship and quantitative structure–activity relationship analyses were conducted. To further determine the effects of quinazolines on acute lung injury treatment, lipopolysaccharide‐induced acute lung injury model was employed. Male Sprague Dawley rats were pretreated with 6m or 6q before instillation of lipopolysaccharide. The results showed that 6m and 6q, especially 6q , obviously alleviated lung histopathological changes, inflammatory cells infiltration, and cytokines mRNA expression initiated by lipopolysaccharide. Taken together, this work suggests that 6m and 6q suppressed the lipopolysaccharide‐induced acute lung injury through inhibition of the inflammatory response in vivo and in vitro, indicating that quinazolines might serve as potential agents for the treatment of acute lung injury and deserve the continuing drug development and research.  相似文献   
37.
To potentiate the quinazoline-based inhibitor of the epidermal growth factor receptor (EGFR), a chloroethyl alkylating moiety was appended to its 6-position. This led to molecules with extremely strong EGFR inhibitory potency and anomalously strong DNA-damaging potential. To assess the role of the chloroethyl group on potency, we designed a molecule in which it is shifted to the 7-position where it would be less reactive and away from the cys773 of the EGFR ATP site. The results showed that (i) ZR2009 was 10-fold less potent than its positional isomer ZR2003 in EGFR tyrosine kinase inhibition, (ii) it consistently exhibited significantly weaker antiproliferative potency than ZR2003, (iii) in reversibility assays, while ZR2003 induced sustained inhibition of EGFR phosphorylation, ZR2009 inhibitory activity was partially reversed, and (iv) likewise, ZR2009 significantly lost its activity in short exposure growth inhibitory assays and induced lower levels of DNA damage than ZR2003. Molecular modeling suggested that while the chloroethylamino group in ZR2003 was at 3.5 Å away from Cys773, that of ZR2009 was at 6.3 Å. The results in toto suggest that, while the chloroethyl is a strong alkylating group, its appendage to the 6-position is optimal for DNA damage, sustained EGFR, and growth inhibition.  相似文献   
38.
Acrylamido‐quinazolines substituted at the 6‐position bind irreversibly to the intracellular ATP binding domain of the epidermal growth factor receptor (EGFR). A general route was developed for preparing 6‐substituted‐4‐anilinoquinazolines from [18F]fluoroanilines for evaluation as EGFR targeting agents with PET. By a cyclization reaction, 2‐[18F]fluoroaniline was reacted with N′‐(2‐cyano‐4‐nitrophenyl)‐N,N‐dimethylimidoformamide to produce 6‐nitro‐4‐(2‐[18F]fluoroanilino)quinazoline in 27.5% decay‐corrected radiochemical yield. Acid mediated tin chloride reduction of the nitro group was achieved in 5 min (80% conversion) and subsequent acylation with acrylic acid gave 6‐acrylamido‐4‐(2‐[18F]fluoroanilino)quinazoline in 8.5% decay‐corrected radiochemical yield, from starting fluoride, in less than 2 h. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
39.
Four novel 18F‐labeled quinazoline derivatives with low lipophilicity, [18F]4‐(2‐fluoroethoxy)‐6,7‐dimethoxyquinazoline ( [ 18 F]I ), [18F]4‐(3‐((4‐(2‐fluoroethoxy)‐7‐methoxyquinazolin‐6‐yl)oxy)propyl)morpholine ( [ 18 F]II ), [18F]4‐(2‐fluoroethoxy)‐7‐methoxy‐6‐(2‐methoxyethoxy)quinazoline ( [ 18 F]III ), and [18F]4‐(2‐fluoroethoxy)‐6,7‐bis(2‐methoxyethoxy)quinazoline ( [ 18 F]IV ), were synthesized via a 2‐step radiosynthesis procedure with an overall radiochemical yield of 10% to 38% (without decay correction) and radiochemical purities of >98%. The lipophilicity and stability of labeled compounds were tested in vitro. The log P values of the 4 radiotracers ranged from 0.52 to 1.07. We then performed ELISA to measure their affinities to EGFR‐TK; ELISA assay results indicated that each inhibitor was specifically bounded to EGFR‐TK in a dose‐dependent manner. The EGFR‐TK autophosphorylation IC50 values of [ 18 F]I , [ 18 F]II , [ 18 F]III , and [ 18 F]IV were 7.732, 0.4698, 0.1174, and 0.1176 μM, respectively. All labeled compounds were evaluated via cellular uptake and blocking studies in HepG2 cell lines in vitro. Cellular uptake and blocking experiment results indicated that [ 18 F]I and [ 18 F]III had excellent cellular uptake at 120‐minute postinjection in HepG2 carcinoma cells (51.80 ± 3.42%ID/mg protein and 27.31 ± 1.94%ID/mg protein, respectively). Additionally, biodistribution experiments in S180 tumor‐bearing mice in vivo indicated that [ 18 F]I had a very fast clearance in blood and a relatively high uptake ratio of tumor to blood (4.76) and tumor to muscle (1.82) at 60‐minute postinjection. [ 18 F]III had a quick clearance in plasma, and its highest uptake ratio of tumor to muscle was 2.55 at 15‐minute postinjection. These experimental results and experiences were valuable for the further exploration of novel radiotracers of quinazoline derivatives.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号