首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2880篇
  免费   145篇
  国内免费   106篇
耳鼻咽喉   17篇
儿科学   11篇
妇产科学   4篇
基础医学   718篇
口腔科学   36篇
临床医学   98篇
内科学   211篇
皮肤病学   4篇
神经病学   1158篇
特种医学   94篇
外科学   88篇
综合类   256篇
预防医学   24篇
眼科学   33篇
药学   329篇
中国医学   45篇
肿瘤学   5篇
  2023年   10篇
  2022年   15篇
  2021年   30篇
  2020年   26篇
  2019年   35篇
  2018年   33篇
  2017年   41篇
  2016年   48篇
  2015年   47篇
  2014年   68篇
  2013年   131篇
  2012年   89篇
  2011年   137篇
  2010年   121篇
  2009年   115篇
  2008年   133篇
  2007年   130篇
  2006年   141篇
  2005年   115篇
  2004年   111篇
  2003年   73篇
  2002年   88篇
  2001年   56篇
  2000年   56篇
  1999年   52篇
  1998年   90篇
  1997年   80篇
  1996年   63篇
  1995年   69篇
  1994年   63篇
  1993年   56篇
  1992年   46篇
  1991年   47篇
  1990年   43篇
  1989年   37篇
  1988年   37篇
  1987年   34篇
  1986年   41篇
  1985年   103篇
  1984年   84篇
  1983年   63篇
  1982年   76篇
  1981年   57篇
  1980年   43篇
  1979年   38篇
  1978年   26篇
  1977年   15篇
  1976年   10篇
  1974年   2篇
  1968年   2篇
排序方式: 共有3131条查询结果,搜索用时 593 毫秒
41.
Leningrad State University, A. A. Ukhtomskii Leningrad Institute of Physiology. (Presented by Academician of the Academy of Medical Sciences of the USSR S. N. Golikov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 109, No. 6, pp. 523–525, June, 1990.  相似文献   
42.
In order to examine temporal changes in enhancement of transmitter release during long-term potentiation (LTP), we examined amplitude fluctuation of excitatory postsynaptic potentials (EPSPs) for longer periods than 2 h after tetanic stimulation (up to 4 h in the longest observation). The relative magnitude of excitatory postsynaptic potentiation (EPSP) fluctuation (coefficient of variation, CV) reduced throughout the observation periods in association with an increase in EPSP amplitude after tetanic stimulation. The reciprocals of squared CVs (= mean2/variance) were almost in proportion to the magnitude of LTP, and the ratio of 1/CV2 and the LTP magnitude did not change significantly for up to 4 h. These findings suggest that a prolonged enhancement of transmitter release from presynaptic terminals underlies LTP, and the relative contribution of this presynaptic enhancement does not change significantly for 2 h (maybe up to 4 h, or longer) after tetanic stimulation.  相似文献   
43.
Spontaneous transient inward currents (STICs) were recorded in canine and guinea-pig tracheal myocytes held at negative membrane potentials. STICs were Cl selective since their reversal potential was dependent on the Cl gradient and they were blocked by the Cl channel blocker niflumic acid. STICs were insensitive to Cs+, charybdotoxin, and nifedipine. Ca2+-activated K+ currents often preceded STICs, suggesting that the STICs are Ca2+ dependent. In support of this suggestion, we found the Cl currents were: (1) abolished by depleting intracellular Ca2+ stores using caffeine, acetylcholine, histamine, or substance P; (2) enhanced by increasing external concentrations of Ca2+; (3) evoked by voltage-dependent Ca2+ influx. The channels responsible for this Cl current are of small unitary conductance (<20 pS). Decay of the STICs was described by a single exponential with a time constant of 94±9 ms at –70 mV; the time constant increased considerably at more positive potentials. Using Ca2+-dependent Cl currents and contractions as indices of internal levels of Ca2+, we found that isolated tracheal cells are capable of exhibiting rhythmic behaviour: bursts of currents and contractions with a periodicity of less than 0.1 Hz and which continued for more than 20 min. These rhythmic events were recorded at negative membrane potentials, suggesting that cyclical release of internally sequestered Ca2+ is responsible. We conclude that spontaneous release of Ca2+ from intracellular stores in tracheal muscle cells leads to transient currents in some cases accompanied by rhythmic contractions. Our studies provide evidence for a cellular mechanism that could underly myogenic oscillations of membrane potential in smooth muscle.  相似文献   
44.
Intracellular microelectrodes have been used to examine the effects, on excitatory inputs to myenteric nerve cells, of lesions of intrinsic pathways in the myenteric plexus of the guinea-pig small intestine. The lesions consisted of circumferential cuts (myotomies) which severed the external musculature to the depth of the submucosa and thus interrupted pathways in the myenteric plexus. Sufficient time was allowed between creating the lesions and recording from the neurons for the endings of severed neurites to degenerate and this was confirmed histochemically by examining the distribution of varicose fibres with 5-hydroxytryptamine immunoreactivity in myenteric ganglia from which recordings were made. Two types of excitatory input, eliciting fast and slow excitatory post-synaptic potentials, respectively, were demonstrable in response to focal stimulation of nerves in the ganglia from which recordings were made. There were no differences in the proportions of neurons in which fast or slow excitatory synaptic potentials were evoked in unoperated preparations (controls), in islands 1.5-4 mm wide between myotomies, or within 1 mm on the oral or anal sides of myotomies. Possible differences in the amplitudes, durations at half amplitude, and threshold numbers of stimuli for initiation of slow excitatory synaptic potentials were analyzed. The only significant differences were found when data from control and oral areas were pooled and compared with combined data from island and anal areas (this assessed differences that could arise from severing nerve fibres running from oral to anal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
45.
Frequency-coded impulses are known to be converted into postsynaptic potentials (PSPs) at the synapse of a target neuron. This can be termed frequency-voltage (F-V) conversion. Studies on this problem in pyramidal tract neurons (PTNs) showed that not only the amplitude but also the duration of depolarizing PSPs was determined as a function of the input impulse frequency. Two opposite patterns of F-V conversion were observed following activation of two input systems to PTNs. Inhibitory postsynaptic potentials were found to play an important role in the regulation of the duration of PSPs by curtailing excitatory post-synaptic potentials.  相似文献   
46.
A mathematical model is proposed to describe the intracellularCa 2+ (Ca i) transient and electrical activity of vascular endothelial cells (VEC) elicited by fluid shear stress (τ). The intracellularCa 2+ store of the model VEC is comprised of aCa i-sensitive (sc) and an inositol (1,4,5)-trisphosphate (IP 3)-sensitive compartment (dc). The dc [Ca 2+] is refilled by the sc whose [Ca 2+] is the same as extracellular [Ca 2+].IP 3 produced by the τ-deformed mechanoreceptors discharges the dcCa 2+ into the cytosol. The increase of cytosolic[Ca 2+] inducesCa 2+ release (CICR) from the sc. The raisedCa i activates aCa i-activatedK + current (I K, Ca) and inhibitsIP 3 production. The cell membrane potential is determined byI K, Ca, voltage-dependentNa + andK + currents. Steady τ>0.1 dyne/cm2 elicits aCa i varies sigmoidally withLog 10(τ) with a maximal peakCa i of 150 nM at τ=4 dynes/cm2. Step increases of τ fail to elicit aCa 2+ response in cells previously stimulated by a lower shear. TheCa 2+ response gradually decreases with repetitive τ stimuli. Pulsatile shear elicits two to three times higherCa i and hyperpolarizes the cell more than steady shear of the same magnitude. The simulatedCa 2+ responses to τ are quantitatively and qualitatively similar to those observed in cultured VEC. The model provides a possible explanation of why the vasodilating stimulus is greater for pulsatile flow than for nonpulsatile flow.  相似文献   
47.
Postsynaptic fibers reaching the dorsal column nuclei were investigated in rat by means of retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate. Each nucleus received only ipsilateral afferents with most of the labeled cells forming a band which covered the mediolateral extent of the dorsal horn in an area that resembled lamina IV in the cat. The labeling excluded the reticular extension of the neck of the dorsal horn. Lumbosacral afferents were restricted to the gracilis nucleus and cervicothoracic afferents to the cuneatus nucleus. Cervical and anterior lumbar levels showed additional projections coming from their most medial parts. The organization of this second-order pathway in rat is similar to that in cat and monkey.  相似文献   
48.
 We have examined the effects of co-expression of Kvβ1.1 and Kvβ2.1 subunits on the gating of rat brain Kv1.4 channels, expressed in Xenopus oocytes. Expression of Kv1.4 subunits alone produced a rapidly inactivating ”A” type current, which activated at potentials beyond –60 mV in a solution containing high levels of rubidium. Current activation curves obtained from tail current measurements were fitted with a Boltzmann function, with V 1/2 = –47 mV and k = 10 mV. Neither the Kvβ1.1 nor Kvβ2.1 subunits altered the voltage dependence of activation. Both subunits accelerated the activation time constant of Kv1.4, without affecting its voltage dependence. Surprisingly, the Kvβ2.1 subunit, which lacks an N-terminal inactivation domain, was almost as effective as the Kvβ1.1 subunit in speeding up Kv1.4. Steady-state inactivation of Kv1.4 was unchanged upon co-expression with either Kvβ1.1 or Kvβ2.1 subunits. Kv1.4 recovered from inactivation with two time constants; apart from an ≈ 50% lengthening of the slow time constant with a high Kvβ2.1 injection ratio, neither time constant was altered by either the Kvβ1.1 or Kvβ2.1 subunits, suggesting little interaction with recovery from C-type inactivation. Clearly, β subunits have the potential to modify the gating of Kv1.4 channels in the brain more subtly than has been suggested previously. Received: 17 March 1997 / Accepted: 30 June 1997  相似文献   
49.
Vasoactive intestinal polypeptide nerve processes and cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the inner circular smooth muscle coat and mainly in the mucosa, but were absent in the longitudinal muscle layer. Submucosal blood vessels were often surrounded by immunoreactive vasoactive intestinal polypeptide positive nerves, in close associations (distance less than 40 mn) to blood vessel basement membranes and to smooth muscle cells. In the ganglia of the myenteric and submucous plexuses, labeled fibers surrounded unstained neural cell bodies. The synaptic vesicles of vasoactive intestinal polypeptide positive terminals were 35-40 nm in diameter and some dense core vesicles (80-120 nm in diameter) were also observed in the same profiles. These observations suggest that vasoactive intestinal polypeptide nerves may participate in regulating smooth muscle activity and local blood flow in the small intestine.  相似文献   
50.
 Changes in membrane potential and potassium concentration in the extracellular space ([K+]e) of rabbit vagus nerve were measured simultaneously during electrical activity and during the period of recovery using a modified sucrose-gap method and potassium-sensitive microelectrodes. After stimulation for 15 s at 15 Hz the main activity-induced increase in [K+]e reached 16.9 mM. This increase in [K+]e was paralleled by a depolarization of the preparation. The period of activity was followed by a post-tetanic hyperpolarization (PTH) lasting tens of seconds, generated by the axonal electrogenic Na+-K+ pump and to a lesser extent by the pump of the surrounding Schwann cells. The amplitude of the PTH dramatically increased in experiments in which inward currents were blocked by removal of Cl or after application of Cs+ or Ba2+, indicating that under normal conditions the current generated by the Na+-K+ pump is strongly short-circuited. A pharmacological and kinetic study showed that these currents are: (1) the hyperpolarization-activated current I h, and (2) the inwardly rectifying I KIR current. The results show that the latter originates from Schwann cells. Our data indicate that in non-myelinated nerves there is a subtle association of inward ionic channels which (1) helps the cell to maintain an optimal membrane potential after a period of activity, and (2) contributes to the removal of excess K+ from the extracellular space. Received: 7 August 1997 / Received after revision 6 April 1998 / Accepted: 15 April 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号