首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1765篇
  免费   161篇
  国内免费   26篇
耳鼻咽喉   4篇
儿科学   3篇
妇产科学   2篇
基础医学   193篇
口腔科学   32篇
临床医学   88篇
内科学   281篇
皮肤病学   6篇
神经病学   70篇
特种医学   73篇
外科学   98篇
综合类   264篇
预防医学   52篇
眼科学   604篇
药学   98篇
  2篇
中国医学   63篇
肿瘤学   19篇
  2024年   4篇
  2023年   31篇
  2022年   84篇
  2021年   207篇
  2020年   65篇
  2019年   55篇
  2018年   42篇
  2017年   73篇
  2016年   65篇
  2015年   69篇
  2014年   87篇
  2013年   116篇
  2012年   101篇
  2011年   95篇
  2010年   68篇
  2009年   63篇
  2008年   74篇
  2007年   79篇
  2006年   72篇
  2005年   73篇
  2004年   59篇
  2003年   48篇
  2002年   38篇
  2001年   36篇
  2000年   32篇
  1999年   31篇
  1998年   21篇
  1997年   17篇
  1996年   10篇
  1995年   25篇
  1994年   14篇
  1993年   12篇
  1992年   6篇
  1991年   6篇
  1990年   13篇
  1989年   6篇
  1988年   8篇
  1987年   11篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1952条查询结果,搜索用时 31 毫秒
71.
Heat transfer in a porous solid−gas mixture system is an important process for many industrial applications. Optimization design of heat insulation material is very important in many fields such as pipe insulation, thermal protection of spacecraft, and building insulation. Understanding the micro-mechanism of the solid−gas coupling effect is necessary for the design of insulation material. The prediction of thermal conductivity is difficult for some kinds of porous materials due to the coupling impact of solid and gas. In this study, the Grand Canonical Monte Carlo method (GCMC) and molecular dynamics simulation (MD) are used to investigate the thermal conductivity for the ordered porous structures of intersecting square rods. The effect of gas concentration (pressure) and solid−gas interaction on thermal conductivity is revealed. The simulation results show that for different framework structures the pressure effect on thermal conductivity presents an inconsistent mode which is different from previous studies. Under the same pressure, the thermal conductivity is barely changed for different interactions between gas and solid phases. This study provides the feasibility for the direct calculation of thermal conductivity for porous structures coupling gas and solid phases using molecular dynamics simulation. The heat transfer in porous structures containing gas could be understood on a fundamental level.  相似文献   
72.
The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.  相似文献   
73.
The complex thermophysical property of temperature-sensitive paint (TSP) research is discussed. TSP is used for visualization of the surface temperature distribution in wind tunnel aerodynamic tests. The purpose of this research was to provide reliable, experimental, thermophysical data of the paint applied as a coating. As TSP is applied as thin surface layers, investigation of its final properties is challenging and demands the application of non-standard procedures. At present, most measurements were performed on composite specimens of TSP deposed onto a thin metallic film substrate or on TSP combined with a cellulose sheet support. The studies involved gravimetric,, thermogravimetric, and microcalorimetric analyses, transversal thermal diffusivity estimation from laser flash data and in-plane effective thermal diffusivity measurements done by the temperature oscillation technique. These results were complemented with scanning electron microcopy analysis, surface characterization and the results of dilatometric measurements performed on the TSP bulk specimens obtained from liquid substrate by casting. Complex analysis of the obtained results indicated an isotropic characteristic of the thermal diffusivity of the TSP layer and provided reliable data on all measured thermophysical parameters—they were revealed to be typical for insulators. Further to presenting these data, the paper, in brief, presents the applied investigation procedures.  相似文献   
74.
The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt.% or 90 wt.% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.  相似文献   
75.
The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.  相似文献   
76.
Garnet-type Li7La3Zr2O12 (LLZO) is considered as a promising solid electrolyte. Nb-doped LLZO ceramics exhibit significantly improved ion conductivity. However, how to prepare the Nb-doped LLZO ceramics in a simple and economical way, meanwhile to investigate the relationship between process conditions and properties in Li7-xLa3Zr2-xNbxO12 ceramics, is particularly important. In this study, Li7-xLa3Zr2-xNbxO12 (LLZNxO, x = 0, 0.2, 0.4, 0.6) ceramics were prepared by conventional solid-state reaction. The effect of sintering process on the structure, microstructure, and ionic conductivity of LLZNxO (x = 0, 0.2, 0.4, 0.6) ceramics was investigated. Due to the more contractive Nb-O bonds in LLZNxO ceramics, the cubic structures are much easier to form and stabilize, which could induce the decreased preparation time. High-performance garnet LLZNxO ceramics can be obtained by optimizing the sintering process with lower calcining temperature and shorter holding time. The garnet samples with x = 0.4 calcined at 850 °C for 10 h and sintered at 1250 °C for 4 h exhibit the highest ionic conductivity of 3.86 × 10−4 S·cm−1 at room temperature and an activation energy of 0.32 eV, which can be correlated to the highest relative density of 96.1%, and good crystallinity of the grains.  相似文献   
77.
Here, in a certain high density interconnect (HDI) printed circuit board, the effect of copper sulfate and sulfuric acid on the filling effect of a blind hole with a certain diameter and depth was investigated by making a blind hole using a CO2 laser drilling machine, filling the blind hole via electroplating by simulating the electroplating line in a Halin cell, and observing the cross-section of a micro blind hole after polishing using metallographic microscope, as well as the effect of hole filling, are evaluated. The results show that, under the conditions of a certain plating solution formula and electroplating parameters (current density and electroplating time), the sag degree decreases with the increase in the copper sulfate concentration. When the concentration of copper sulfate increases from 210 g/L to 225 g/L, the filling effect is good and the sag degree is about 0. However, with the increase in sulfuric acid concentration, the sag increases gradually. When the sulfuric acid concentration is 25–35 g/L, both the sag and copper coating thickness are in a small range. Under appropriate electroplating conditions, a better blind hole filling effect can be obtained. The volume of blind hole has a certain effect on the diffusion and exchange of copper sulfate and sulfuric acid, as well as on the concentration distribution of additives.  相似文献   
78.
Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16–18%, flexural strength by ~9–12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics—in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.  相似文献   
79.
Bulk ceria-zirconia solid solutions (Ce1−xZrxO2−δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10−24–0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2−δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1−xZrxO2−δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2−δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10−14 bar. The defect interactions in Ce1−xZrxO2−δ are analyzed in the framework of defect models for ceria and zirconia.  相似文献   
80.
Polymer nanofibers have the ability to replace expensive materials, such as metals, ceramics and composites, in specific areas, such as heat exchangers, energy storage and biomedical applications. These properties have caused polymer nanofibers to be explored as solutions to a growing list of thermal management problems, driving an even greater need to better measure and understand the thermal properties of these nanofibers. This study intends to further the understanding of the thermal properties of polymer nanofibers through the use of a novel Probe-to-Probe measurement method. Polycaprolactone nanofibers fabricated using the electrospinning method can be easily collected and loaded into a traditional atomic force microscope through a mechanical design for thermal measurement. This Probe-to-Probe method demonstrates the ability to accurately measure the thermal boundary conditions about a polymer nanofiber with a heating prong temperature up to 400 C and assists in characterizing its thermal properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号