首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6075篇
  免费   620篇
  国内免费   257篇
耳鼻咽喉   13篇
儿科学   2篇
妇产科学   6篇
基础医学   868篇
口腔科学   251篇
临床医学   451篇
内科学   556篇
皮肤病学   119篇
神经病学   98篇
特种医学   177篇
外科学   144篇
综合类   669篇
预防医学   256篇
眼科学   46篇
药学   2675篇
中国医学   324篇
肿瘤学   297篇
  2024年   13篇
  2023年   113篇
  2022年   148篇
  2021年   434篇
  2020年   200篇
  2019年   267篇
  2018年   369篇
  2017年   350篇
  2016年   459篇
  2015年   358篇
  2014年   502篇
  2013年   1028篇
  2012年   329篇
  2011年   404篇
  2010年   263篇
  2009年   243篇
  2008年   197篇
  2007年   215篇
  2006年   187篇
  2005年   167篇
  2004年   125篇
  2003年   82篇
  2002年   60篇
  2001年   40篇
  2000年   31篇
  1999年   44篇
  1998年   39篇
  1997年   27篇
  1996年   29篇
  1995年   32篇
  1994年   26篇
  1993年   18篇
  1992年   29篇
  1991年   15篇
  1990年   21篇
  1989年   11篇
  1988年   14篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有6952条查询结果,搜索用时 156 毫秒
91.
Purpose: The aim of this study was to examine the feasibility of using nanoparticle-enhanced transmission ultrasound (NETUS) as an image-based monitoring modality for microwave hyperthermia treatment.

Methods: A dedicated transmission ultrasound imaging system was used to obtain acoustic projections and ultrasound computed tomography images. Initially, speed-of-sound based images were used to non-invasively monitor temperature changes in in vitro and ex vivo specimens, induced by a microwave needle-type applicator. Next, the hyperthermia acceleration ability of two ultrasound nanoparticles based contrast agents (iron oxide and copper oxide) was examined and visualised. Finally, a two-step image guided microwave therapeutic procedure using NETUS was investigated in a realistic breast mimicking phantom. First, the pathology simulating region borders were detected. Then, a microwave-induced temperature elevation was non-invasively monitored.

Results: The transmission ultrasound scanning system was able to detect temperature changes with a resolution of less than 0.5?°C, both in vitro and ex vivo. In accordance with previous studies, it was visually demonstrated that iron oxide nanoparticles expedite the heating process (p?Conclusions: NETUS can combine enhanced target visualisation with non-invasive thermometry and accelerated heating effect. Quantitative feedback, however, requires a tissue-specific calibration-curve. A proof of concept for microwave hyperthermia treatment monitoring using NETUS was established. The suggested methodology may potentially provide a non-invasive cost-effective means for monitoring thermal treatment of the breast.  相似文献   
92.
Controlling the magnetic properties of a nanoparticle efficiently via its particle size to achieve optimized heat under alternating magnetic field is the central point for magnetic hyperthermia-mediated cancer therapy (MHCT). Here, we have shown the successful use of stevioside (a natural plant-based glycoside) as a promising biosurfactant to control the magnetic properties of Fe3O4 nanoparticles by controlling the particle size. The biocompatibility and cellular uptake efficiency by rat C6 glioma cells and calorimetric magnetic hyperthermia profile of the nanoparticles were further examined. Our finding suggests superior properties of stevioside-coated magnetite nanoparticles in comparison to polysorbate-80 and oleic acid coated nanomagnets as far as particle size reduction, biocompatibility, hyperthermic effect, and cellular uptake by the glioblastoma cancer cells are concerned. The stevioside-coated nanomagnets exhibiting the maximum temperature rise were further investigated as heating agents in in vitro magnetic hyperthermia experiments (405?kHz, 168?Oe), showing their efficacy to induce cell death of rat C6 glioma cells after 30?min at a target temperature T?=?43?°C.  相似文献   
93.
Cementum is a mineralized tissue that lines the surface of the tooth root enabling attachment of the periodontal ligament to the root and surrounding alveolar bone. Studies examining the mechanisms involved in the formation of root cementum have been hindered by an inability to isolate and culture the cells required for cementum production (cementoblasts). This study isolated and characterized cementoblast cells derived from rat molar periodontal ligament. It was observed that the isolated cells expressed F‐Spondin, a cementoblast marker, while F‐Spondin expression was not observed in the cells of other tissues such as gingival fibroblasts and osteoblasts. As expected, the isolated cementoblast cells also expressed osteocalcin (OC), bone sialoprotein (BSP), alkaline phosphatase (ALP), and type I collagen, demonstrating the presence of mineralized tissues genes in cementoblast cells. These cells showed high ALP activity and calcified nodule formation in vitro. Since cementogenesis could be a critical event for regeneration of periodontal tissues, this study investigated whether bioactive glass particles could affect the proliferation of cementoblasts since they are known to enhance osteoblast proliferation. It was found that the ionic products from bioactive glass nanoparticles increased cementoblast viability, mitochondrial activity, and induced cell proliferation. Together, these results show the characterization of cementoblast cells from rat molar periodontal ligament. Additionally, it was shown that bioactive glass nanoparticles induced cementoblast to proliferate, indicating that they could be a potential material for use in cement regeneration through tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
94.
We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose derived mesenchymal stem cells (adMSCs), and bone marrow-derived mesenchymal stem cells (bmMSCs) was assessed by AlamarBlue and Calcein AM viability assays at concentrations ranging from 5 to 300 μg/ml for 24 or 72 h. Cytotoxicity of the 2D graphene nanostructures was found to be dose dependent, not time dependent, with concentrations less than 50 μg/ml showing no significant differences compared to untreated controls. Differentiation potential of adMSCs to adipocytes and osteoblasts, – characterized by Oil Red O staining and elution, alkaline phosphatase activity, calcium matrix deposition and Alizarin Red S staining – did not change significantly when treated with the three graphene nanoparticles at a low (10 μg/ml) and high (50 μg/ml) concentration for 24 h. Transmission electron microscopy (TEM) and confocal Raman spectroscopy indicated cellular uptake of only GNOs and GONPs. The results lay the foundation for the use of these nanoparticles at potentially safe doses as ex vivo labels for MSC-based imaging and therapy.  相似文献   
95.
The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9?ng ml?1) and mixture of PAH (30 and 300?ng ml?1), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP?+?PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP?+?PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.  相似文献   
96.
Large efforts are invested on the development of in vitro tests to evaluate nanomaterial (NM) toxicity. In order to assess the relevance of the adverse effects identified in in vitro toxicity tests a thorough understanding of the biokinetics of NMs is critical. We used different in vitro and in vivo test methods to evaluate cell uptake and oral absorption of titanium dioxide nanoparticles (TiO2 NPs). These NPs were readily uptaken by A549 cells (carcinomic human alveolar basal epithelial cells) in vitro. Such rapid uptake contrasted with a very low oral absorption in a differentiated Caco-2 monolayer system (human epithelial colorectal adenocarcinoma cells) and after oral gavage administration to rats. In this oral study, no significant increase in the levels of titanium was recorded by ICP-MS in any of the tissues evaluated (including among other: small intestine, Peyer's patches, mesenteric lymph nodes, liver, and spleen). No NPs were observed by TEM in sections of the small intestine, except for several particles in the cytoplasm of a cell from a Peyer's Patch area. The observation of NPs in Peyer's Patch suggests that the Caco-2 monolayer system is likely to underestimate the potential for oral absorption of NPs and that the model could be improved by including M-cells in co-culture.  相似文献   
97.
《Acta biomaterialia》2014,10(5):2112-2124
The present study reports an engineered poly-l-lactide-co-glycolic acid (PLGA)–casein polymer–protein hybrid nanocarrier 190 ± 12 nm in size entrapping a combination of chemically distinct (hydrophobic/hydrophilic) model drugs. A simple emulsion–precipitation route was adopted to prepare nearly monodispersed nanoparticles with distinct core/shell morphology entrapping paclitaxel (Ptx) in the core and epigallocatechin gallate (EGCG) in the shell, with the intention of providing a sequential and sustained release of these drugs. The idea was that an early release of EGCG would substantially increase the sensitivity of Ptx to cancer, thereby providing improved therapeutics at lower concentrations, with less toxicity. The hemo- and immunocompatibility of the core/shell nanomedicine was established in this study. The core/shell nanoparticles injected via the tail vein in Sprague–Dawley rats did not reveal any organ toxicity as was evident from histopathological evaluations of the major organs. In vivo pharmacokinetic studies in rats by high-performance liquid chromatography confirmed a sustained and sequential release of both the drugs in plasma, indicating prolonged circulation of the nanomedicine and enhanced availability of the drugs when compared to the bare drugs. Overall, the polymer–protein multilayered nanoparticles proved to be a promising platform for nanopolypharmaceutics.  相似文献   
98.
The pulmonary delivery of nanoparticles (NPs) is a promising approach in nanomedicine. For the efficient and safe use of inhalable NPs, understanding of NP interference with lung surfactant metabolism is needed. Lung surfactant is predominantly a phospholipid substance, synthesized in alveolar type II cells (ATII), where it is packed in special organelles, lamellar bodies (LBs). In vitro and in vivo studies have reported NPs impact on surfactant homeostasis, but this phenomenon has not yet been sufficiently examined. We showed that in ATII-like A549 human lung cancer cells, silica-coated superparamagnetic iron oxide NPs (SiO2-SPIONs), which have a high potential in medicine, caused an increased cellular amount of acid organelles and phospholipids. In SiO2-SPION treated cells, we observed elevated cellular quantity of multivesicular bodies (MVBs), organelles involved in LB biogenesis. In spite of the results indicating increased surfactant production, the cellular quantity of LBs was surprisingly diminished and the majority of the remaining LBs were filled with SiO2-SPIONs. Additionally, LBs were detected inside abundant autophagic vacuoles (AVs) and obviously destined for degradation. We also observed time- and dose-dependent changes in mRNA expression for proteins involved in lipid metabolism. Our results demonstrate that non-cytotoxic concentrations of SiO2-SPIONs interfere with surfactant metabolism and LB biogenesis, leading to disturbed ability to reduce hypophase surface tension. To ensure the safe use of NPs for pulmonary delivery, we propose that potential NP interference with LB biogenesis is obligatorily taken into account.  相似文献   
99.
The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.  相似文献   
100.
Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号