首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2613篇
  免费   263篇
  国内免费   58篇
耳鼻咽喉   3篇
儿科学   26篇
基础医学   262篇
口腔科学   11篇
临床医学   87篇
内科学   78篇
皮肤病学   125篇
神经病学   369篇
特种医学   76篇
外国民族医学   1篇
外科学   102篇
综合类   126篇
现状与发展   1篇
预防医学   20篇
眼科学   4篇
药学   180篇
中国医学   17篇
肿瘤学   1446篇
  2024年   5篇
  2023年   59篇
  2022年   64篇
  2021年   170篇
  2020年   106篇
  2019年   98篇
  2018年   89篇
  2017年   94篇
  2016年   106篇
  2015年   203篇
  2014年   173篇
  2013年   272篇
  2012年   152篇
  2011年   145篇
  2010年   130篇
  2009年   100篇
  2008年   117篇
  2007年   82篇
  2006年   102篇
  2005年   80篇
  2004年   49篇
  2003年   71篇
  2002年   59篇
  2001年   52篇
  2000年   44篇
  1999年   43篇
  1998年   36篇
  1997年   30篇
  1996年   24篇
  1995年   26篇
  1994年   13篇
  1993年   19篇
  1992年   13篇
  1991年   13篇
  1990年   18篇
  1989年   11篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   6篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1973年   1篇
排序方式: 共有2934条查询结果,搜索用时 78 毫秒
81.
82.
System xc (Sxc), a cystine-glutamate antiporter, is established as an interesting target for the treatment of several pathologies including epileptic seizures, glioma, neurodegenerative diseases, and multiple sclerosis. Erastin, sorafenib, and sulfasalazine (SSZ) are a few of the established inhibitors of Sxc. However, its pharmacological inhibition with novel and potent agents is still very much required due to potential issues, for example, potency, bioavailability, and blood–brain barrier (BBB) permeability, with the current lead molecules such as SSZ. Therefore, in this study, we report the synthesis and structure–activity relationships (SAR) of SSZ derivatives along with molecular docking and dynamics simulations using the developed homology model of xCT chain of Sxc antiporter. The generated homology model attempted to address the limitations of previously reported comparative protein models, thereby increasing the confidence in the computational modeling studies. The main objective of the present study was to derive a suitable lead structure from SSZ eliminating its potential issues for the treatment of glioblastoma multiforme (GBM), a deadly and malignant grade IV astrocytoma. The designed compounds with favorable Sxc inhibitory activity following in vitro Sxc inhibition studies, showed moderately potent cytotoxicity in patient-derived human glioblastoma cells, thereby generating potential interest in these compounds. The xCT-ligand model can be further optimized in search of potent lead molecules for novel drug discovery and development studies.  相似文献   
83.
84.
Cancer stem cells are thought to be closely related to tumor progression and recurrence, making them attractive therapeutic targets. Stem cells of various tissues exist within niches maintaining their stemness. Glioblastoma stem cells (GSCs) are located at tumor capillaries and the perivascular niche, which are considered to have an important role in maintaining GSCs. There were some extracellular matrices (ECM) on the perivascular connective tissue, including type 1 collagen. We here evaluated whether type 1 collagen has a potential niche for GSCs. Imunohistochemical staining of type 1 collagen and CD133, one of the GSCs markers, on glioblastoma (GBM) tissues showed CD133‐positive cells were located in immediate proximity to type 1 collagen around tumor vessels. We cultured human GBM cell lines, U87MG and GBM cells obtained from fresh surgical tissues, T472 and T555, with serum‐containing medium (SCM) or serum‐free medium with some growth factors (SFM) and in non‐coated (Non‐coat) or type 1 collagen‐coated plates (Col). The RNA expression levels of CD133 and Nestin as stem cell markers in each condition were examined. The Col condition not only with SFM but SCM made GBM cells more enhanced in RNA expression of CD133, compared to Non‐coat/SCM. Semi‐quantitative measurement of CD133‐positive cells by immunocytochemistry showed a statistically significant increase of CD133‐positive cells in Col/SFM. In addition, T472 cell line cultured in the Col/SFM had capabilities of sphere formation and tumorigenesis. Type 1 collagen was found in the perivascular area and showed a possibility to maintain GSCs. These findings suggest that type 1 collagen could be one important niche component for CD133‐positive GSCs and maintain GSCs in adherent culture.  相似文献   
85.
The objective of the current study was to evaluate the regional and voxel‐wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC‐MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3‐dimensional gradient‐echo spin‐echo (GRASE) acquisition. All images were registered to a high‐resolution anatomical atlas. Average CBF measurements within regions of contrast‐enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel‐wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel‐wise correlation was only observed in around 30‐40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.  相似文献   
86.
Glioblastoma is characterized by extensive vascularization and is highly resistant to current therapy. Identification of drugs that target tumor directly and angiogenesis processes present an effective therapeutic strategy for glioblastoma. Mnk kinase is required for the activation of eukaryotic initiation factor 4E (eIF4E), which mediates translation of oncogenic proteins. We investigated the effects of tomivosertib, a novel MAPK-interacting kinase (MNK) inhibitor, on glioblastoma angiogenesis, growth, and survival. We found that tomivosertib inhibited growth and induced caspase-dependent apoptosis in various glioblastoma cell lines. Tomivosertib disrupted glioblastoma endothelial cell capillary network formation, growth, and survival. Mechanistically, tomivosertib acted on glioblastoma via suppressing MNK-dependent eIF4E phosphorylation and activation in tumor and endothelial cells. We further found that temozolomide activated eIF4E and this was reversed by tomivosertib. Using glioblastoma xenograft mouse model, we demonstrated that temozolomide and tomivosertib combination had higher efficacy than tomivosertib alone. Of note, tomivosertib inhibited glioblastoma angiogenesis and decreased p-eIF4E level in mice. We finally showed that p-eIF4E activation was a common molecular feature in glioblastoma patients. Our pre-clinical findings suggest that tomivosertib is a useful addition to the treatment armamentarium for glioblastoma and that targeting MNK-eIF4E pathway represents a therapeutic strategy to overcome glioblastoma chemoresistance.  相似文献   
87.
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM''s resistance to X-rays in a clinical setting.  相似文献   
88.
Resistance of glioblastoma to the chemotherapeutic compound temozolomide is associated with the presence of glioblastoma stem cells in glioblastoma and is a key obstacle for the poor prognosis of glioblastoma. Here, we show that phospholipase D1 is elevated in CD44High glioblastoma stem cells and in glioblastoma, especially recurring glioblastoma. Phospholipase D1 elevation positively correlated with the level of CD44 and poor prognosis in glioblastoma patients. Temozolomide significantly upregulated the expression of phospholipase D1 in the low and moderate CD44 populations of glioblastoma stem cells, but not in the CD44High population in which phospholipase D1 is highly expressed. Phospholipase D1 conferred resistance to temozolomide in CD44High glioblastoma stem cells and increased their self-renewal capacity and maintenance. Phospholipase D1 expression significantly correlated with levels of temozolomide resistance factors, which were suppressed by microRNA-320a and -4496 induced by phospholipase D1 inhibition. Genetic and pharmacological targeting of phospholipase D1 attenuated glioblastoma stem cell-derived intracranial tumors of glioblastoma using the microRNAs, and improved survival. Treatment solely with temozolomide produced no benefits on the glioblastoma, whereas in combination, phospholipase D1 inhibition sensitized glioblastoma stem cells to temozolomide and reduced glioblastoma tumorigenesis. Together, these findings indicate that phospholipase D1 inhibition might overcome resistance to temozolomide and represents a potential treatment strategy for glioblastoma. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.  相似文献   
89.
90.
An angiosarcomatous component in gliosarcoma may be associated with an increased intraoperative hemorrhagic risk and preoperative diagnostic challenge. We report a unique case of gliosarcoma with an angiosarcomatous component in a 61-year-old man. His brain MRI demonstrated a well-demarcated right occipital tumor with multiple flow voids and rim-like enhancement as well as intratumoral strip and nodular enhancements. He underwent a craniotomy for tumor resection. Intraoperatively, significant tumor hemorrhage required greater efforts to control intraoperative bleeding and to maintain hemostasis. Pathological examination of the tumor revealed alternating gliomatous and sarcomatous/angiosarcomatous components with intratumoral hemorrhage. He was postoperatively treated with chemoradiation. The tumor recurred at 9 months, for which the second resection was performed with similarly greater efforts to achieve hemostasis. The recurrent tumor was pathologically similar despite treatment-associated changes. Awareness of this angiosarcomatous component in gliosarcoma with the hemorrhagic risk is important for both the preoperative diagnosis and surgical management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号