首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   7篇
基础医学   18篇
临床医学   1篇
内科学   8篇
皮肤病学   3篇
神经病学   10篇
特种医学   2篇
外科学   7篇
综合类   6篇
现状与发展   1篇
眼科学   4篇
药学   22篇
肿瘤学   7篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   10篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有89条查询结果,搜索用时 250 毫秒
41.
大量临床和基础研究证实雌激素具有显著的心血管保护效应,且该效应至少部分是通过增加血管内皮型一氧化氮合酶(eNOS)的表达和活性进而释放NO产生的。雌激素既可通过基因效应调节eNOS的表达,也可通过位于内皮细胞质膜微囊(caveolae)的ERα的一个亚群介导的非基因效应调节eNOS的活性。非基因效应与MAPK,PI3K/Akt等信号通路及内皮细胞质膜微囊密切相关,雌激素也可直接通过调节微囊蛋白-1表达而对eNOS的激活起负性调节作用。  相似文献   
42.
43.
The Rho signaling has an essential function in human immunodeficiency virus (HIV)-1-mediated disruption of the integrity of the blood–brain barrier (BBB). However, it is unknown how membrane domains, such as lipid rafts, can influence HIV-1-mediated activation of the Rho pathway and how these processes can affect the expression of the efflux transporters at the BBB level. This study is focused on the function of HIV-1 protein Tat in activation of the Rho signaling and upregulation of P-glycoprotein (P-gp) in human brain endothelial cells. Treatment with Tat markedly elevated GTP-RhoA levels and the potential downstream effectors, such as myosin phosphatase target subunit 1 and myosin light chain. In addition, Tat upregulated expression and promoter activity of P-gp as well as its efflux function. Inhibition of the Rho signaling cascade effectively blocked P-gp overexpression at the level of promoter activity. Disruption of lipid rafts by depletion of membrane cholesterol by methyl-beta-cyclodextrin, but not caveolin-1 silencing, also abolished Tat-mediated RhoA activation and P-gp upregulation. The present data indicate the critical function of intact lipid rafts and the Rho signaling in HIV-1-mediated upregulation of P-gp and potential development of drug resistance in brain endothelial cells.  相似文献   
44.
45.
In this review, we examine how far the increased understanding that we have of the events in excitation contraction can explain the effects of the oestrous cycle and sex hormones on uterine function. Observational studies of electrical and mechanical activity in the rat myometrium have shown a relative quiescence during pro-oestrous, with little propagation of any electrical events. Thus, uterine activity can be said to approximately inversely reflect plasma 17β-oestradiol concentrations. We show that Ca2+ signalling and mechanical activity are greatest in metoestrous and dioestrous compared to pro-oestrous and oestrous. These data are discussed in terms of hormonal effects on Ca2+ and K+ channels. Finally, the influence of sex hormones on lipid rafts and caveolae are considered and discussed in relation to recent findings on their role in uterine signalling and contractility, and cholesterol levels and obesity.  相似文献   
46.
AIMS: Caveolae are cholesterol-rich plasmalemmal microdomains that serve as sites for sequestration of signaling proteins and thus may facilitate, organize, and integrate responses to extracellular stimuli. While previous studies in the bladder have demonstrated alterations in caveolae with particular physiologic or pathologic conditions, little attention has been focused on the functional significance of these organelles. Therefore, the purpose of this study was to investigate the role of caveolae in the modulation of receptor-mediated signal transduction and determine the presence and localization of caveolin proteins in bladder tissue. METHODS: Contractile responses to physiologic agonists were measured in rat bladder tissue before and after disruption of caveolae achieved by depleting membrane cholesterol with methyl-beta-cyclodextrin. Stimulation with agonists was repeated after caveolae were restored as a result of cholesterol replenishment. RT-PCR, immmunohistochemistry, and Western blotting were used to determine the expression and localization of caveolin mRNA and proteins. RESULTS: Following caveolae disruption, contractile responses to angiotensin II and serotonin were attenuated, whereas responses to bradykinin and phenylephrine were augmented. Cholesterol replenishment restored responses towards baseline. Carbachol and KCl induced contractions were not affected by caveolae disruption. Ultrastructure analysis confirmed loss of caveolae following cholesterol depletion with cyclodextrin and caveolae restoration following cholesterol replacement. Gene and protein expression of caveolin-1, -2, and -3 was detected in bladder tissue. Immunoreactivity for all three caveolins was observed in smooth muscle cells throughout the bladder. CONCLUSIONS: The functional effects of cholesterol depletion on specific agonist-induced contractile events and the expression of all three caveolins in bladder smooth muscle support a central role for caveolae in regulation of selective G-protein-coupled receptor signaling pathways in bladder smooth muscle. Thus, caveolae serve to differentially regulate bladder smooth muscle by a stimulus-dependent potentiation or inhibition of bladder contraction.  相似文献   
47.
Caveolin‐1 (Cav‐1) is highly expressed in alveolar epithelial type I (AE1) and endothelial cells of the alveolar region of the lung. Interestingly, alveolar epithelial type II (AE2) cells that are progenitors of the AE1 cells do not express Cav‐1. We investigated whether genetic Cav‐1 deficiency alters the phenotype of AE2 cells and their microenvironment using stereology. Total number, mean volume, and subcellular composition of the AE2 cells were not altered in Cav‐1 ?/? when compared with wild‐type mice. The alveolar septa were thickened and contained a significantly greater volume of extracellular matrix. Thus, AE2 cells as progenitors of AE1 cells are not critically involved in the severe pulmonary phenotype in Cav‐1‐deficient mice. Anat Rec, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
48.
49.
Fibroblasts at the tumor-host interface can differentiate into myofibroblasts and pericytes, and contribute to the guidance and stabilization of endothelial sprouts. After intravenous administration of biotin-BSA-GdDTPA-FAM in mice with subcutaneous MLS human ovarian carcinoma tumors, the distribution of the macromolecular MRI/optical contrast material was confined to blood vessels in normal tissues, while it co-registered with alphaSMA-positive stroma tracks within the tumor. These alphaSMA-positive tumor-associated myofibroblasts and pericytes showed uptake of the contrast material into intracellular granules. We evaluated the use of this contrast material for in vitro labeling of tumor fibroblasts as an approach for tracking their involvement in angiogenesis. Fluorescence microscopy demonstrated internalization of the contrast material, and MRI revealed a significant increase in the R(1) relaxation rate of labeled fibroblasts. R(1) not only remained elevated for 2 weeks in culture, it also increased with cell proliferation, indicating prolonged retention of the contrast material and subsequent intracellular processing and redistribution of the material, and thereby enhancing MR contrast. Moreover, cells that were labeled ex vivo with MR contrast material and co-inoculated with tumor cells in mice were detected in vivo by MRI. Uptake of the contrast material was suppressed by nystatin, suggesting internalization by caveolae-mediated endocytosis. This study shows that labeling of fibroblasts with biotin-BSA-GdDTPA-FAM is feasible and would allow noninvasive in vivo tracking of fibroblasts during tumor angiogenesis and vessel maturation.  相似文献   
50.
目的探讨Caveolae对降钙素基因相关肽(CGRP)抑制过氧化氢(H2O2)诱导的人脐静脉内皮细胞(HUVECs)损伤作用的影响及其机制。方法体外培养HUVECs,分别用CGRP和/或H2O2处理细胞,光学显微镜观察细胞形态学和密度的变化;流式细胞术观察细胞的增殖和周期分布;β-环糊精(β-CD)用于破坏caveolae结构;Western-blot检测caveolin-1表达。结果与正常组比较,CGRP组细胞密度增加,S期细胞数明显增多,H2O2组细胞密度降低,S期细胞数明显减少;CGRP预孵育细胞能抵抗H2O2引起的细胞数目减少;β-CD剥夺胆固醇,破坏caveolae结构,HUVECs形态学发生改变,但CGRP诱导的细胞密度和细胞增殖进一步提升,恢复胆固醇后,该作用被取消。与对照组比较,CGRP组细胞caveolin-1表达水平降低(P<0.05);H2O2组细胞caveolin-1水平上升(P<0.05),给予CGRP预孵育后,能显著逆转H2O2诱导的caveolin-1表达(P<0.05);β-CD破坏caveolae结构后,增强CGRP下调HUVECs caveolin-1表达的作用(P<0.05),增加胆固醇Caveolae结构有所恢复且该作用被削弱。结论 Caveolae结构完整性对CGRP保护H2O2损伤HUVECs有一定影响,破坏caveolae结构能增强CGRP对H2O2损伤的HUVECs的增殖作用,其机制可能与增强CGRP下调氧化应激导致的caveolin-1的表达有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号