首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7658篇
  免费   82篇
  国内免费   21篇
耳鼻咽喉   11篇
儿科学   45篇
妇产科学   15篇
基础医学   779篇
口腔科学   20篇
临床医学   191篇
内科学   332篇
皮肤病学   7篇
神经病学   2576篇
特种医学   137篇
外科学   92篇
综合类   286篇
预防医学   100篇
眼科学   40篇
药学   3063篇
中国医学   61篇
肿瘤学   6篇
  2022年   23篇
  2021年   57篇
  2020年   61篇
  2019年   40篇
  2018年   50篇
  2017年   72篇
  2016年   78篇
  2015年   63篇
  2014年   177篇
  2013年   220篇
  2012年   196篇
  2011年   307篇
  2010年   224篇
  2009年   341篇
  2008年   374篇
  2007年   313篇
  2006年   250篇
  2005年   248篇
  2004年   219篇
  2003年   231篇
  2002年   183篇
  2001年   189篇
  2000年   194篇
  1999年   187篇
  1998年   184篇
  1997年   219篇
  1996年   171篇
  1995年   202篇
  1994年   183篇
  1993年   190篇
  1992年   174篇
  1991年   160篇
  1990年   160篇
  1989年   159篇
  1988年   132篇
  1987年   128篇
  1986年   113篇
  1985年   137篇
  1984年   142篇
  1983年   87篇
  1982年   134篇
  1981年   99篇
  1980年   104篇
  1979年   110篇
  1978年   82篇
  1977年   79篇
  1976年   82篇
  1975年   80篇
  1974年   57篇
  1973年   40篇
排序方式: 共有7761条查询结果,搜索用时 17 毫秒
41.
The present study examines the effects of noradrenergic lesions (either DSP-4 i.p. or 6-hydroxydopamine (6-OHDA) into the dorsal noradrenergic bundle on biochemical (noradrenaline (NA), dopamine (DA), serotonin (5-HT) and choline acetyltransferase (ChAT) activity) and cortical EEG (quantitative EEG (qEEG) and high-voltage spindle (HVS) activity in young and aged rats. Near complete 6-OHDA NA lesions, but not partial DSP-4 NA lesions, increased HVS activity in young rats. DSP-4 and 6-OHDA lesions produced no significant changes in the 5-HT or DA levels or in the ChAT activity in young rats. In some of the aged rats, DSP-4 produced similar biochemical and HVS effects, as it induced in young rats. In the remainder of the aged rats, NA levels were greatly and 5-HT levels slightly decreased. DA levels and ChAT activity were unaltered in either set of aged rats. HVS activity was increased only in that group of aged rats with the greatly lowered NA content. These results suggest that: (1) some of the aged rats are more sensitive to DSP-4 treatment than young adult rats; and (2) NA depletions have to be complete to produce an increase in HVS activity in young and aged rats.  相似文献   
42.
GM1 ganglioside is believed to be important in promoting the recovery of neurons from injury. The present study assesses the ability of GM1 to repair or prevent the damage of dopamine neurons caused by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Treatment of mesencephalic cell cultures with 2.5 μM MPP+ resulted in the loss of 30% of tyrosine hydoxylase (TH) immunoreactive neurons. In contrast, cultures administered 100 μM GM1 ganglioside for 3 days after toxin treatment contained nearly control numbers of TH+ neurons (97%). This reparative effect of GM1 was reflected in parallel increases in TH enzyme activity, dopamine and dopac levels. Cultures sustaining greater insult from higher doses of MPP+ (5.0–10.0 μM) did not benefit from ganglioside treatment, suggesting that rescue by GM1 depended on the degree of initial damage to cells. Moreover, the timing of ganglioside treatment was critical; pretreatment with GM1 alone did not prevent or attenuate the damage caused by subsequent incubation in 2.5 μM MPP+.  相似文献   
43.
The results of many anatomical, physiological, and pharmacological studies suggest that substance P-containing neurons of the striatum project to the substantia nigra, and that substance P influences the activity of dopaminergic nigrostriatal neurons. The purpose of the present ultrastructural study was to employ dual immunocytochemical labeling to determine the morphological basis for the observed actions of substance P on nigral dopaminergic neurons. Substance P-like and tyrosine hydroxylase-like immunoreactivities were localized simultaneously at the ultrastructural level in the substantia nigra of the rat. A double label method was utilized which relied on a combination of the peroxidase-antiperoxidase method (Sternberger, 1979) for substance P, and immunogold or silver enhanced immunogold labeling for tyrosine hydroxylase. The present results indicate that tyrosine hydroxylase immunoreactive (THLI) dendrites in the substantia nigra receive synaptic input from terminals exhibiting substance P-like immunoreactivity. These findings support the idea that substance P is a major neurotransmitter in the striatonigral loop, and suggest that striatal substance P neurons act directly upon nigral dopaminergic cells.  相似文献   
44.
The steady-state density and the turnover rates of D1-dopamine receptors were investigated in the striatum, nucleus accumbens, substantia nigra, and retina of adult (3-month-old) and aged (23-month-old) rats. The turnover rates were measured by monitoring the repopulation kinetics of D1-dopamine receptors labeled with [3H]-SCH 23390 after the irreversible inactivation induced by a single dose of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ, 10 mg/kg, s.c.). In all the neural tissues examined, the repopulation of D1 dopamine receptors could be adequately described by a theoretical model that assumes a constant rate of receptor production (i.e. zero order) and a rate of degradation that is dependent on the receptor density at any time (i.e. first order). The results obtained indicate that the reduction in the density of D1-dopamine receptors in the striatum, nucleus accumbens and substantia nigra of aged rats is the result of a larger decrease in the receptor production rate (−44 to −60%) than in the receptor degradation rate (−21 to −46%). By contrast, the production rate of D1-dopamine receptors in the retina of aged rats remains unchanged, whilst the degradation rate is reduced by 25%. This results in an age-related increase in the density of D1-dopamine receptors in the rat retina.  相似文献   
45.
In order to evaluate in vivo single-photon emission tomography (SPET) method of assessing cerebral function after hypoxic-ischemic injury in human neonates, we studied D1 and D2 dopamine receptors in a rat model. Seven-day-old rats underwent permanent unilateral common carotid ligation followed by exposure to 8% O2. Two weeks later, in brains with no visible loss of hemispheric volume, striatal dopaminergic receptors were studied, with [125I]TISCH and [1251]IBZM for the D1 and D2 dopamine receptors, respectively. Using [125I]TISCH, we observed no modifications of D1 receptors, but in contrast, ex vivo and in vitro autoradiographic experiments showed a 40% decrease in the striatal binding of [125I]IBZM on both the ipsilateral and the contralateral side to the carotid ligation. These alterations were detected with IBZM, a D2 dopamine receptor ligand usable for SPET imaging. Therefore, exploration of D2 receptors by SPET in human neonates suffering from perinatal hypoxia-ischemia may be valuable for the diagnosis and follow-up of cerebral function damages. Correspondence to: D. Guilloteau  相似文献   
46.
Exposure of primary cultured astrocytes for 3 days to 1 μM of either dopamine, serotonin or norepinephrine resulted in upregulation (25–34% increase in Bmax) of the peripheral-type benzodiazepine receptors (PBRs) labeled with [3H]Ro5-4864. A similar treatment with γ-aminobutyric acid [GABA] caused a 2-fold increase in the affinity (Kd) of [3H]Ro5-4864. The monoamines tested and GABA had no effect on the binding parameters of [3H]PK 11195, another selective PBR ligand. The present study indicates that Ro5-4864 binding sites are susceptible to regulation by specific neurotransmitters and provides further evidence for the distinction between Ro5-4864 and PK 11195 binding sites of the PBRs in cultured astrocytes.  相似文献   
47.
We examined the effects of dopamine (DOA) 10 μg·kg−1·min−1 I.V. and dobutamine (DOB) 10 μg·kg−1. min−1 I.V. on the contractility of the fatigued diaphragm in 26 anesthetized, mechanically ventilated dogs. Animals were divided into two groups of 13 each: the DOA and DOB groups. Diaphragmatic fatigue was induced by intermittent supramaximal bilateral electrophrenic stimulation at a frequency of 20 Hz applied for 30 min. Diaphragmatic contractility was assessed from changes in transdiaphragmatic pressure (Pdi). After diaphragmatic fatigue, Pdi at low-frequency (20 Hz) stimulation decreased significantly compared with the prefatigue value (P<0.05), whereas no change in Pdi was observed at high-frequency (100 Hz) stimulation. In the fatigued diaphragm, Pdi at both stimuli increased with an infusion of either DOA (P<0.05) or DOB (P<0.05). The increase of Pdi at 20 Hz stimulation was significantly larger in the DOB group compared with that of the DOA group (P<0.05). In each group, Pdi at both stimuli decreased after the cessation of administration. The integrated diaphragmatic electric activity (Edi) in the two groups did not change at any frequency of stimulation throughout the study. We conclude that DOB in comparison with DOA is more effective in improving the contractility of the fatigued diaphragm.  相似文献   
48.
Activities of spontaneously firing neurons in the globus pallidus of intact rats and rats that survived unilateral lesions of the nigrostriatal pathway for 3 days, 1 week, or 6-11 weeks were compared. No significant differences in neuronal firing rate, firing pattern, and number of cells per pass were observed between chloral hydrate-anesthetized control and lesioned animals. However, in locally anesthetized animals, pallidal cells fired significantly faster than in chloral hydrate-anesthetized animals, and the lesion caused a decrease in the firing rates of pallidal cells 1 week and 6-9 weeks postlesion. In addition, significant differences in the firing pattern of pallidal cells, as determined by the ratio of the mean to median interspike intervals, were seen between locally anesthetized controls and animals surviving 3 days, 1 week, and 6-9 weeks postlesion. This altered firing pattern tended to return to normal with time. The number of cells per pass was not significantly altered by the lesion. Data from this study suggest that, in locally anesthetized animals, the removal of the tonic dopaminergic input to the basal ganglia causes pallidal cells to decrease their firing rates in a time-dependent fashion and causes reversable firing pattern changes. This suggests that tonically active dopamine neurons, probably acting through the striatopallidal pathway, regulate the firing rate and mechanisms controlling the temporal ordering of spontaneous discharges of globus pallidus neurons.  相似文献   
49.
A9 and A10 units identified as dopaminergic were recorded with extracellular micropipettes. The units were antidromically activated by electrical stimulation at the level of the preoptic area. The absolute refractory periods ranged from 1.2 to 2.5 ms. During the 2–8 ms of the relative refractory period, conduction was slower than normal by up to 1.5 ms. The time constant, C, of the strength-duration curve ranged from 0.4 to 0.6 ms. The current (I)-distance (D) relationship, tested by moving the stimulating electrode past the axon, was approximately parabolic (I = K D exp 2), with the constant of the equation, K, ranging from 900 to 2000 μA/mm exp 2, for 0.5 ms pulses. This relationship allows calculation of the radius of the field of dopamine axon excitation at any current. These high K values show that axons of dopamine cells cannot be activated unless high current densities are derivered, even when electrodes are placed near the axons. These data allow determination of the extent to which dopamine axons can be the directly activated substrates for behaviors, such as self-stimulation and circling, which are evoked by electrical stimulation of the medial forebrain bundle or internal capsule.  相似文献   
50.
Antagonists of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid (EAA) receptors blocked cocaine-induced stereotypy, locomotor stimulation and convulsions. These effects in general appear to involve selectively NMDA type of receptors. The results suggest that NMDA-activated systems are an integral component in the reaction sequences involved in the expression of several behavioral effects of cocaine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号