首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   153篇
  国内免费   71篇
儿科学   4篇
妇产科学   1篇
基础医学   202篇
口腔科学   8篇
临床医学   58篇
内科学   54篇
神经病学   1011篇
特种医学   14篇
外科学   9篇
综合类   186篇
现状与发展   1篇
预防医学   6篇
眼科学   19篇
药学   93篇
中国医学   23篇
肿瘤学   27篇
  2024年   1篇
  2023年   21篇
  2022年   13篇
  2021年   36篇
  2020年   54篇
  2019年   47篇
  2018年   45篇
  2017年   42篇
  2016年   62篇
  2015年   55篇
  2014年   69篇
  2013年   74篇
  2012年   73篇
  2011年   87篇
  2010年   91篇
  2009年   74篇
  2008年   77篇
  2007年   84篇
  2006年   80篇
  2005年   82篇
  2004年   59篇
  2003年   67篇
  2002年   64篇
  2001年   37篇
  2000年   18篇
  1999年   35篇
  1998年   43篇
  1997年   38篇
  1996年   39篇
  1995年   24篇
  1994年   15篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   10篇
  1989年   13篇
  1988年   5篇
  1987年   4篇
  1986年   14篇
  1985年   13篇
  1984年   5篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1972年   1篇
排序方式: 共有1716条查询结果,搜索用时 15 毫秒
51.
Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.  相似文献   
52.
Glial cells in the central nervous system (CNS) contribute to formation of the extracellular matrix, which provides adhesive sites, signaling molecules, and a diffusion barrier to enhance efficient on and axon potential propagation. In the normal adult CNS, the extracellular matrix (ECM) is relatively stable except in selected regions characterized by dynamic remodeling. However, after trauma such as a spinal cord injury or cortical contusion, the lesion epicenter becomes a focus of acute neuroinflammation. The activation of the surrounding glial cells leads to a dramatic change in the composition of the ECM at the edges of the lesion, creating a perilesion environment dominated by growth inhibitory molecules and restoration of the peripheral/ central nervous system border. An advantage of this response is to limit the invasion of damaging cells and diffusion of toxic molecules into the spared tissue regions, but this occurs at the cost of inhibiting migration of endogenous repair cells and preventing axonal regrowth. The following review was prepared by reading and discussing over 200 research articles in the field published in PubMed and selecting those with significant impact and/or controversial points. This article highlights structural and functional features of the normal adult CNS ECM and then focuses on the reactions of glial cells and changes in the perilesion border that occur following spinal cord or contusive brain injury. Current research strategies directed at modifying the inhibitory perilesion microenvironment without eliminating the protective functions of glial cell activation are discussed.  相似文献   
53.
Neuroglial cells are homeostatic neural cells. Generally, they are electrically non-excitable and their activation is associated with the generation of complex intracellular Ca2+ signals that define the “Ca2+ excitability” of glia. In mammalian glial cells the major source of Ca2+ for this excitability is the lumen of the endoplasmic reticulum (ER), which is ultimately (re)filled from the extracellular space. This occurs via store-operated Ca2+ entry (SOCE) which is supported by a specific signaling system connecting the ER with plasmalemmal Ca2+ entry. Here, emptying of the ER Ca2+ store is necessary and sufficient for the activation of SOCE, and without Ca2+ influx via SOCE the ER store cannot be refilled. The molecular arrangements underlying SOCE are relatively complex and include plasmalemmal channels, ER Ca2+ sensors, such as stromal interaction molecule, and possibly ER Ca2+ pumps (of the SERCA type). There are at least two sets of plasmalemmal channels mediating SOCE, the Ca2+-release activated channels, Orai, and transient receptor potential (TRP) channels. The molecular identity of neuroglial SOCE has not been yet identified unequivocally. However, it seems that Orai is predominantly expressed in microglia, whereas astrocytes and oligodendrocytes rely more on TRP channels to produce SOCE. In physiological conditions the SOCE pathway is instrumental for the sustained phase of the Ca2+ signal observed following stimulation of metabotropic receptors on glial cells.  相似文献   
54.
Astrocytic glycogen, the only storage form of glucose in the brain, has been shown to play a fundamental role in supporting learning and memory, an effect achieved by providing metabolic support for neurons. We have examined the interplay between glycogenolysis and the bioenergetics of astrocytic Ca2+ homeostasis, by analyzing interdependency of glycogen and store‐operated Ca2+ entry (SOCE), a mechanism in cellular signaling that maintains high endoplasmatic reticulum (ER) Ca2+ concentration and thus provides the basis for store‐dependent Ca2+ signaling. We stimulated SOCE in primary cultures of murine cerebellar and cortical astrocytes, and determined glycogen content to investigate the effects of SOCE on glycogen metabolism. By blocking glycogenolysis, we tested energetic dependency of SOCE‐related Ca2+ dynamics on glycogenolytic ATP. Our results show that SOCE triggers astrocytic glycogenolysis. Upon inhibition of adenylate cyclase with 2',5'‐dideoxyadenosine, glycogen content was no longer significantly different from that in unstimulated control cells, indicating that SOCE triggers astrocytic glycogenolysis in a cAMP‐dependent manner. When glycogenolysis was inhibited in cortical astrocytes by 1,4‐dideoxy‐1,4‐imino‐D‐arabinitol, the amount of Ca2+ loaded into ER via sarco/endoplasmic reticulum Ca2‐ATPase (SERCA) was reduced, which suggests that SERCA pumps preferentially metabolize glycogenolytic ATP. Our study demonstrates SOCE as a novel pathway in stimulating astrocytic glycogenolysis. We also provide first evidence for a new functional role of brain glycogen, in providing local ATP to SERCA, thus establishing the bioenergetic basis for astrocytic Ca2+ signaling. This mechanism could offer a novel explanation for the impact of glycogen on learning and memory. GLIA 2014;62:526–534  相似文献   
55.
Of purinergic receptors, P2X7 receptor (P2X7R, defined as a full‐length receptor) has unique characteristics, and its activation leads to ion channel activity and pore formation, causing cell death. Previously, we demonstrated that P2X7R expressed by nonstimulated astrocyte cultures obtained from SJL‐strain mice exhibits constitutive activation, implying its role in maintenance of cellular homeostasis. To obtain novel insights into its physiological roles, we examined whether constitutive activation of P2X7R is regulated by expression of its splice variants in such resting astrocytes, and whether their distinct expression profiles in different mouse strains affect activation levels of astrocytic P2X7Rs. In SJL‐ and ddY‐mouse astrocytes, spontaneous YO‐PRO‐1 uptake, an indicator of pore activity of P2X7R, was detected, but the uptake by the formers was significantly greater than that by the latter. Between the two mouse strains, there was a difference in their sensitivity of YO‐PRO‐1 uptake to antagonists, but not in the expression levels and sequences of P2X7R and pannexin‐1. Regarding expression of splice variants of P2X7R, expression of P2X7R variant‐3 (P2X7R‐v3) and ‐4 (P2X7R‐v4), but not variant‐2 and ‐k, was lower in SJL‐mouse astrocytes than in ddY‐mouse ones. On transfection of P2X7R‐v3 and ‐v4 into SJL‐mouse astrocytes, the pore activity was attenuated as in the case of the HEK293T cell‐expression system. These findings demonstrate that basal activity of P2X7R expressed by resting astrocytes is negatively regulated by P2X7R‐v3 and ‐v4, and that their distinct expression profiles result in the different activation levels of astrocytic P2X7Rs in different mouse strains. GLIA 2014;62:440–451  相似文献   
56.
Lipocalin-2 (LCN2) is a secreted protein of the lipocalin family, but little is known about the expression or the role of LCN2 in the central nervous system. Here, we investigated the role of LCN2 in ischemic stroke using a rodent model of transient cerebral ischemia. Lipocalin-2 expression was highly induced in the ischemic brain and peaked at 24 hours after reperfusion. After transient middle cerebral artery occlusion, LCN2 was predominantly expressed in astrocytes and endothelial cells, whereas its receptor (24p3R) was mainly detected in neurons, astrocytes, and endothelial cells. Brain infarct volumes, neurologic scores, blood–brain barrier (BBB) permeabilities, glial activation, and inflammatory mediator expression were significantly lower in LCN2-deficient mice than in wild-type animals. Lipocalin-2 deficiency also attenuated glial neurotoxicity in astrocyte/neuron cocultures after oxygen-glucose deprivation. Our results indicate LCN2 has a critical role in brain injury after ischemia/reperfusion, and that LCN2 may contribute to neuronal cell death in the ischemic brain by promoting neurotoxic glial activation, neuroinflammation, and BBB disruption.  相似文献   
57.
58.
Huntington''s disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD.  相似文献   
59.
Granular/fuzzy astrocytes (GFAs), a subtype of “aging‐related tau astrogliopathy,” are noted in cases bearing various neurodegenerative diseases. However, the pathogenic significance of GFAs remains unclear. We immunohistochemically examined the frontal cortex, caudate nucleus, putamen and amygdala in 105 cases composed of argyrophilic grain disease cases (AGD, N = 26), and progressive supranuclear palsy (PSP, N = 10), Alzheimer’s disease (AD, N = 20) and primary age‐related tauopathy cases (PART, N = 18) lacking AGD, as well as 31 cases bearing other various neurodegenerative diseases to clarify (i) the distribution patterns of GFAs in AGD, and PSP, AD and PART lacking AGD, (ii) the impacts of major pathological factors and age on GFA formation and (iii) immunohistochemical features useful to understand the formation process of GFAs. In AGD cases, GFAs consistently occurred in the amygdala (100%), followed by the putamen (69.2%) and caudate nucleus and frontal cortex (57.7%, respectively). In PSP cases without AGD, GFAs were almost consistently noted in all regions examined (90–100%). In AD cases without AGD, GFAs were less frequent, developing preferably in the putamen (35.0%) and caudate nucleus (30.0%). PART cases without AGD had GFAs most frequently in the amygdala (35.3%), being more similar to AGD than to AD cases. Ordered logistic regression analyses using all cases demonstrated that the strongest independent factor of GFA formation in the frontal cortex and striatum was the diagnosis of PSP, while that in the amygdala was AGD. The age was not significantly associated with GFA formation in any region. In GFAs in AGD cases, phosphorylation and conformational change of tau, Gallyas‐positive glial threads indistinguishable from those in tufted astrocytes, and the activation of autophagy occurred sequentially. Given these findings, AGD, PSP, AD and PART cases may show distinct distributions of GFAs, which may provide clues to predict the underlying processes of primary tauopathies.  相似文献   
60.
目的:探讨TGF-β2对人正常星形胶质细胞株HA1800增殖和迁移的作用。方法:体外培养HA1800细胞,培养基中加入外源性TGF-β2,分0 ng/ml、2 ng/ml和10 ng/ml组。Ed U标记检测HA1800细胞的增殖情况;流式细胞术检测细胞周期;划痕实验检测细胞迁移能力。结果:TGF-β2能明显增加Ed U阳性细胞的数量,并增加S期和G_2/M期细胞的比例;外源性的TGF-β2还可以明显提升HA1800细胞的迁移能力。结论:TGF-β2能够调节体外培养的HA1800细胞的生长状态,促进HA1800细胞的增殖和迁移能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号