首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82643篇
  免费   5955篇
  国内免费   3717篇
耳鼻咽喉   359篇
儿科学   1489篇
妇产科学   854篇
基础医学   13182篇
口腔科学   1693篇
临床医学   6906篇
内科学   14201篇
皮肤病学   1030篇
神经病学   8160篇
特种医学   1322篇
外国民族医学   15篇
外科学   4881篇
综合类   14012篇
现状与发展   22篇
预防医学   4692篇
眼科学   969篇
药学   10571篇
  9篇
中国医学   2608篇
肿瘤学   5340篇
  2024年   112篇
  2023年   839篇
  2022年   1650篇
  2021年   2995篇
  2020年   2397篇
  2019年   2059篇
  2018年   2028篇
  2017年   2340篇
  2016年   2681篇
  2015年   3032篇
  2014年   5111篇
  2013年   5722篇
  2012年   5408篇
  2011年   6050篇
  2010年   4794篇
  2009年   4652篇
  2008年   4800篇
  2007年   4664篇
  2006年   4174篇
  2005年   3934篇
  2004年   3206篇
  2003年   2752篇
  2002年   2109篇
  2001年   1823篇
  2000年   1575篇
  1999年   1338篇
  1998年   1243篇
  1997年   1092篇
  1996年   931篇
  1995年   755篇
  1994年   727篇
  1993年   606篇
  1992年   526篇
  1991年   494篇
  1990年   410篇
  1989年   327篇
  1988年   312篇
  1987年   294篇
  1986年   266篇
  1985年   371篇
  1984年   331篇
  1983年   221篇
  1982年   257篇
  1981年   199篇
  1980年   170篇
  1979年   116篇
  1978年   98篇
  1977年   82篇
  1976年   69篇
  1975年   55篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry.TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2 h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed.In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health.  相似文献   
12.
13.
14.
15.
Immune checkpoint inhibitors are molecules that increase the endogenous immune response against tumors. They have revolutionized the field of oncology. Since their initial approval for the treatment of advanced melanoma, their use has expanded to the treatment of several other advanced cancers. Unfortunately, immune checkpoint inhibitors have also been associated with the emergence of a new subset of autoimmune-like toxicities, known as immune-related adverse events. These toxicities differ depending on the agent, malignancy, and individual susceptibilities. Although the skin and colon are most commonly involved, any organ may be affected, including the liver, lungs, kidneys, and heart. Most of these toxicities are diagnosed by excluding other secondary infectious or inflammatory causes. Corticosteroids are commonly used for treatment of moderate and severe immune-related adverse events, although additional immunosuppressive therapy may occasionally be required. The occurrence of immune-related toxicities may require discontinuation of immunotherapy, depending on the specific toxicity and its severity. In this article, we provide a focused review to familiarize practicing clinicians with this important topic given that the use of immune checkpoint inhibitors continues to increase.  相似文献   
16.
17.
18.
《Vaccine》2021,39(26):3498-3508
Adenovirus infections are a major cause of epidemic keratoconjunctivitis (EKC), which can lead to corneal subepithelial infiltrates and multifocal corneal opacity. In the current study, we investigated the use of an E1/E3-deleted adenovirus serotype 5 (Ad5) vector as a vaccine administered intramuscularly (IM) or intranasally (IN) against subsequent challenges with a luciferase-expressing Ad5 (Ad5-Luci) vector via eyedrop. We evaluated the adaptive immune response to Ad5 vector vaccination and confirmed a robust polyfunctional CD8 T cell response in splenic cells. Neutralizing Ad5 antibodies were also measured in the sera of vaccinated mice as well as Ad5 antibody in the eye wash solutions. Upon challenge with Ad5-Luci vector 8 weeks post the primary immunization, transduction was significantly reduced by > 70% in the vaccinated mice, which was slightly better in IM- vs. that in IN-vaccinated animals. Resistance to subsequent challenge was observed 10 months post primary IM vaccination, with sustained reduction up to 60% in the Ad5-Luci vector transduction. Passive immunization of naive mice with antisera from IM to vaccinated mice subsequently challenged with the Ad5-Luci vector resulted in approximately 40% loss in transduction efficiency. Furthermore, the mice that received IM immunization with or without CD8 T cell depletion showed > 40% and 70% reductions, respectively, in Ad8 genomic copies after Ad8 topical challenge. We conclude that Ad-vector vaccination successfully induced an adaptive immune response that prevented subsequent Ad transduction in the cornea and conjunctiva-associated tissues in a mouse model of adenovirus keratoconjunctivitis, and that both cellular and humoral immunity play an important role in preventing Ad transduction.  相似文献   
19.
《Vaccine》2021,39(45):6601-6613
AKS-452 is a biologically-engineered vaccine comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain antigen (Ag) and human IgG1 Fc (SP/RBD-Fc) in clinical development for the induction and augmentation of neutralizing IgG titers against SARS-CoV-2 viral infection to address the COVID-19 pandemic. The Fc moiety is designed to enhance immunogenicity by increasing uptake via Fc-receptors (FcγR) on Ag-presenting cells (APCs) and prolonging exposure due to neonatal Fc receptor (FcRn) recycling. AKS-452 induced approximately 20-fold greater neutralizing IgG titers in mice relative to those induced by SP/RBD without the Fc moiety and induced comparable long-term neutralizing titers with a single dose vs. two doses. To further enhance immunogenicity, AKS-452 was evaluated in formulations containing a panel of adjuvants in which the water-in-oil adjuvant, Montanide™ ISA 720, enhanced neutralizing IgG titers by approximately 7-fold after one and two doses in mice, including the neutralization of live SARS-CoV-2 virus infection of VERO-E6 cells. Furthermore, ISA 720-adjuvanted AKS-452 was immunogenic in rabbits and non-human primates (NHPs) and protected from infection and clinical symptoms with live SARS-CoV-2 virus in NHPs (USA-WA1/2020 viral strain) and the K18 human ACE2-trangenic (K18-huACE2-Tg) mouse (South African B.1.351 viral variant). These preclinical studies support the initiation of Phase I clinical studies with adjuvanted AKS-452 with the expectation that this room-temperature stable, Fc-fusion subunit vaccine can be rapidly and inexpensively manufactured to provide billions of doses per year especially in regions where the cold-chain is difficult to maintain.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号