首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504289篇
  免费   110191篇
  国内免费   7026篇
耳鼻咽喉   20980篇
儿科学   47843篇
妇产科学   42083篇
基础医学   212626篇
口腔科学   42909篇
临床医学   127737篇
内科学   291495篇
皮肤病学   31697篇
神经病学   113302篇
特种医学   57217篇
外国民族医学   367篇
外科学   221117篇
综合类   48628篇
现状与发展   14篇
一般理论   331篇
预防医学   120952篇
眼科学   33989篇
药学   118034篇
  117篇
中国医学   11427篇
肿瘤学   78641篇
  2021年   13106篇
  2019年   12314篇
  2018年   18638篇
  2017年   14554篇
  2016年   15137篇
  2015年   18608篇
  2014年   24228篇
  2013年   35825篇
  2012年   50522篇
  2011年   53911篇
  2010年   33380篇
  2009年   30163篇
  2008年   49488篇
  2007年   52837篇
  2006年   52246篇
  2005年   49972篇
  2004年   46662篇
  2003年   44580篇
  2002年   43311篇
  2001年   63695篇
  2000年   65057篇
  1999年   54522篇
  1998年   15208篇
  1997年   13581篇
  1996年   13813篇
  1995年   12980篇
  1994年   12274篇
  1992年   42962篇
  1991年   42059篇
  1990年   41568篇
  1989年   40168篇
  1988年   37500篇
  1987年   36610篇
  1986年   35021篇
  1985年   33339篇
  1984年   24786篇
  1983年   21544篇
  1982年   12754篇
  1979年   23602篇
  1978年   16519篇
  1977年   14360篇
  1976年   13580篇
  1975年   14935篇
  1974年   17571篇
  1973年   16997篇
  1972年   16217篇
  1971年   15143篇
  1970年   14046篇
  1969年   13637篇
  1968年   12899篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
72.
73.
74.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
75.
76.
77.
78.
79.
Hailey–Hailey disease (HHD), also known as benign familial pemphigus, is an autosomal dominant skin condition that affects the adhesion of epidermal keratinocytes. Although the initial manifestation of flaccid vesicles on erythematous or normal skin in flexure sites frequently goes unnoticed, large, macerated, exudative plaques of superficial erosions with crusting are observed at the time of diagnosis. There is no specific treatment for HHD, and most cases are symptomatically supported. However, infrared laser ablation has been somewhat helpful. We present a case successfully treated with fractional CO2 laser showing a long-term favourable outcome and no adverse effects. Thus, this modality could be an alternative to full ablation for this condition.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号