首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1413600篇
  免费   104041篇
  国内免费   2563篇
耳鼻咽喉   19831篇
儿科学   45724篇
妇产科学   40180篇
基础医学   205249篇
口腔科学   38563篇
临床医学   121960篇
内科学   279492篇
皮肤病学   29621篇
神经病学   112093篇
特种医学   56181篇
外国民族医学   378篇
外科学   219830篇
综合类   28228篇
现状与发展   1篇
一般理论   405篇
预防医学   102961篇
眼科学   32045篇
药学   106807篇
  1篇
中国医学   2701篇
肿瘤学   77953篇
  2018年   15065篇
  2017年   11453篇
  2016年   12897篇
  2015年   14822篇
  2014年   20585篇
  2013年   30615篇
  2012年   42875篇
  2011年   45878篇
  2010年   26933篇
  2009年   25512篇
  2008年   43755篇
  2007年   47147篇
  2006年   47579篇
  2005年   46972篇
  2004年   44795篇
  2003年   43120篇
  2002年   42362篇
  2001年   59921篇
  2000年   61175篇
  1999年   52564篇
  1998年   15997篇
  1997年   14201篇
  1996年   14263篇
  1995年   13452篇
  1994年   12750篇
  1993年   11776篇
  1992年   42027篇
  1991年   41358篇
  1990年   40738篇
  1989年   39505篇
  1988年   36815篇
  1987年   36079篇
  1986年   34455篇
  1985年   32834篇
  1984年   24661篇
  1983年   21479篇
  1982年   13140篇
  1981年   11595篇
  1979年   23157篇
  1978年   16411篇
  1977年   14138篇
  1976年   13355篇
  1975年   14524篇
  1974年   17086篇
  1973年   16425篇
  1972年   15662篇
  1971年   14499篇
  1970年   13465篇
  1969年   12922篇
  1968年   12181篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
65.
66.
Background and purpose — Total ankle arthroplasties (TAAs) have larger revision rates than hip and knee implants. We examined the survival rates of our primary TAAs, and what different factors, including the cause of arthritis, affect the success and/or revision rate.Patients and methods — From 2004 to 2016, 322 primary Hintegra TAAs were implanted: the 2nd generation implant from 2004 until mid-2007 and the 3rd generation from late 2007 to 2016. A Cox proportional hazards model evaluated sex, age, primary diagnosis, and implant generation, pre- and postoperative angles and implant position as risk factors for revision.Results — 60 implants (19%) were revised, the majority (n = 34) due to loosening. The 5-year survival rate (95% CI) was 75% (69–82) and the 10-year survival rate was 68% (60–77). There was a reduced risk of revision, per degree of increased postoperative medial distal tibial angle at 0.84 (0.72–0.98) and preoperative talus angle at 0.95 (0.90–1.00), indicating that varus ankles may have a larger revision rate. Generation of implant, sex, primary diagnosis, and most pre- and postoperative radiological angles did not statistically affect revision risk.Interpretation — Our revision rates are slightly above registry rates and well above those of the developer. Most were revised due to loosening; no difference was demonstrated with the 2 generations of implant used. Learning curve and a low threshold for revision could explain the high revision rate.

Arthritis in the ankle often develops earlier than in the hip or knee, and 70% have a traumatic etiology (Saltzman et al. 2005, Brown et al. 2006). Total ankle arthroplasty (TAA) can be indicated for severe arthritis in the ankle joint, but the anatomical preconditions, like a small surface area and high stress from compression and torque (Bouguecha et al. 2011, Kakkar and Siddique 2011), makes it less durable than hip and knee prosthetics. The Hintegra TAA, a 3-component mobile bearing, uncemented implant (Hintermann et al. 2004) is widely used and results from the development center demonstrate survival rates of 94% and 84% after 5 and 10 years’ follow-up (Barg et al. 2013). This is considerably more than the survival rates from national registries. Labek et al. (2011) demonstrated that development centers report only half of the revision rate that can be found in the few existing national registers. In a systematic review of primary Agility total ankle arthroplasty (DePuy Synthes Orthopedics, Warsaw, IN, USA), the author (Roukis 2012) found that the incidence of complications increased from 7% to 12%, in studies where the inventor was excluded. Similar results were found by Prissel and Roukis (2013), who found an increased incidence of complications from 6% to 13% in studies where the inventor or faculty consultants were excluded. These studies indicated the risk of selection (inventor) and publication (conflict of interest) bias.Planning and surgical technique, including significant experience, are mandatory for a successful outcome. The better result from development centers may reflect, besides the above-mentioned bias, that there is a long learning curve and that the indication for revision surgery varies.We examined the survival rates of primary Hintegra TAAs performed at Hvidovre Hospital, with revision rate as outcome. We report primary diagnosis for primary TAA and examine whether sex, generation of the implant, preoperative angles and implant position affect the revision rate.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号