首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130750篇
  免费   82141篇
  国内免费   2892篇
耳鼻咽喉   15497篇
儿科学   39446篇
妇产科学   32093篇
基础医学   164334篇
口腔科学   31728篇
临床医学   100236篇
内科学   216933篇
皮肤病学   26869篇
神经病学   91734篇
特种医学   45827篇
外国民族医学   326篇
外科学   171332篇
综合类   24640篇
一般理论   412篇
预防医学   84054篇
眼科学   26474篇
药学   81559篇
  3篇
中国医学   2318篇
肿瘤学   59968篇
  2018年   12945篇
  2017年   10159篇
  2016年   12073篇
  2015年   13640篇
  2014年   17637篇
  2013年   26465篇
  2012年   35983篇
  2011年   37295篇
  2010年   22342篇
  2009年   20506篇
  2008年   35235篇
  2007年   37591篇
  2006年   38110篇
  2005年   37137篇
  2004年   36005篇
  2003年   34832篇
  2002年   33671篇
  2001年   51323篇
  2000年   52536篇
  1999年   44122篇
  1998年   12439篇
  1997年   11059篇
  1996年   10295篇
  1995年   10367篇
  1994年   9634篇
  1993年   8977篇
  1992年   33947篇
  1991年   33171篇
  1990年   32653篇
  1989年   31432篇
  1988年   28546篇
  1987年   28668篇
  1986年   26680篇
  1985年   25836篇
  1984年   19346篇
  1983年   16259篇
  1982年   9818篇
  1981年   8845篇
  1979年   17939篇
  1978年   12995篇
  1977年   10990篇
  1976年   10312篇
  1975年   11032篇
  1974年   13186篇
  1973年   12666篇
  1972年   11730篇
  1971年   10930篇
  1970年   10132篇
  1969年   9414篇
  1968年   8776篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
61.
A 42‐year‐old man presented with a viral prodrome and tested positive for influenza A. He rapidly deteriorated developing cardiogenic shock, rhabdomyolysis, and acute kidney injury. Patient improved 1 week later with supportive measures including vasopressors, inotropes, and an intraaortic balloon pump. We report this case as it highlights the discordance between echocardiographic ventricular wall thickening as a result of myocardial edema, and electrocardiographic findings at presentation, with a reversal in findings at time of resolution. Additionally, there was some suggestion of a regional pattern to the reduced longitudinal strain.  相似文献   
62.
63.
64.
65.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
66.

Objective

The “Centre Hospitalier Francois Dunan” is located on an isolated island and ensures patients care in hemodialysis thanks to telemedicine support. Many research studies have demonstrated the importance of hemodialysis fluids composition to reduce morbidity in patients on chronic hemodialysis. The aim of this study was to identify the risks inherent in the production of dialysis fluids in a particular context, in order to set up an improvement action plan to improve risk control on the production of dialysis fluids.

Methods

The risk analysis was conducted with the FMECA methodology (Failure Mode, Effects and Criticality Analysis) by a multi professional work group. Three types of risk have been reviewed: technical risks that may impact the production of hemodialysis fluids, health risks linked with chemical composition and health risks due to microbiological contamination of hemodialysis fluids.

Results

The work group, in close cooperation with the expert staff of the dialysis center providing telemedicine assistance, has developed an action plan in order to improve the control of the main risks brought to light by the risk analysis.

Conclusion

The exhaustive analysis of the risks and their prioritisation have permitted to establish a relevant action plan in this improving quality of dialysis fluids approach. The risk control of dialysis fluids is necessary for the security of dialysis sessions for patients, even more when these sessions are realized by telemedicine in Saint-Pierre-et-Miquelon.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号