首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   113篇
  国内免费   13篇
耳鼻咽喉   41篇
儿科学   60篇
妇产科学   43篇
基础医学   511篇
口腔科学   24篇
临床医学   415篇
内科学   677篇
皮肤病学   30篇
神经病学   298篇
特种医学   132篇
外科学   479篇
综合类   4篇
一般理论   1篇
预防医学   182篇
眼科学   33篇
药学   307篇
中国医学   6篇
肿瘤学   196篇
  2024年   2篇
  2023年   9篇
  2022年   9篇
  2021年   94篇
  2020年   25篇
  2019年   56篇
  2018年   75篇
  2017年   54篇
  2016年   44篇
  2015年   72篇
  2014年   75篇
  2013年   117篇
  2012年   254篇
  2011年   258篇
  2010年   128篇
  2009年   128篇
  2008年   245篇
  2007年   252篇
  2006年   273篇
  2005年   256篇
  2004年   238篇
  2003年   200篇
  2002年   216篇
  2001年   31篇
  2000年   18篇
  1999年   17篇
  1998年   45篇
  1997年   41篇
  1996年   24篇
  1995年   35篇
  1994年   21篇
  1993年   24篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   12篇
  1988年   15篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   6篇
  1974年   2篇
  1966年   1篇
排序方式: 共有3439条查询结果,搜索用时 76 毫秒
81.
Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.  相似文献   
82.
Introduction and objectivesWe assessed the long-term hemodynamic performance of transcatheter heart valve (THV) by paired transthoracic echocardiography (TTE), and the incidence, characteristics and factors associated with THV structural valve degeneration (SVD).MethodsA total of 212 patients who underwent transcatheter aortic valve replacement and had a potential follow-up > 5 years with at least 1 TTE ≥ 1-year postprocedure were included. All patients had a TTE at 1 to 5 years and 36 had another one at 6 to 10 years. SVD was defined as subclinical (increase > 10 mmHg in mean transvalvular gradient +  decrease > 0.3 cm2 in valve area and/or new-onset mild or moderate aortic regurgitation) and clinically relevant (increase > 20 mmHg in mean transvalvular gradient + decrease > 0.6 cm2 in valve area and/or new-onset moderate-to-severe aortic regurgitation). Fifteen patients had a transesophageal echocardiography at the time of SVD diagnosis, and 85 an opportunistic computed tomography examination at 1 (0.5-2) years.ResultsTransvalvular mean gradient increased and valve area decreased over time (P < .01). At 8 years of follow-up, SVD occurred in 30.2% of patients (clinically relevant: 9.3%). Transesophageal echocardiography revealed thickened and reduced-mobility leaflets in 80% and 73% of SVD cases, respectively. No baseline or procedural factors were associated with SVD. THV underexpansion (3.5%) or eccentricity (8.2%) had no impact on valve hemodynamics/SVD at follow-up.ConclusionsA gradual THV hemodynamic deterioration occurred throughout a 10-year period, leading to SVD in ~30% of patients (clinically relevant in < 10%). Leaflet morphology/mobility were frequently impaired in SVD cases, but THV geometry did not influence valve hemodynamics or SVD.  相似文献   
83.
Empirical approaches have guided the development of bacterial cultures. The availability of sequenced genomes now provides opportunities to define culture media for growth of fastidious pathogens with computer modelling of metabolic networks. A key issue is the possibility of growing host-dependent bacteria in cell-free conditions. The sequenced Tropheryma whipplei genome was analysed to identify specific metabolic deficiencies. We used this information to design a comprehensive medium that allowed three established T whipplei strains from culture with human cells and one new strain from a clinical sample to grow axenically. Genomic information can, therefore, provide sufficient clues for designing axenic media for fastidious and uncultured pathogens.  相似文献   
84.
85.
BACKGROUND: Both highly potent antiretroviral drug rescue therapy and treatment interruption have been suggested to be effective in patients with multiple treatment failure. OBJECTIVE: To assess both the benefits and risks of an 8-week treatment interruption associated with a six to nine-drug rescue regimen in patients with multiple treatment failures. DESIGN: A randomized comparative controlled trial in 19 university hospitals in France. PATIENTS: Sixty-eight HIV-infected patients with multiple previous treatment failures and CD4 cell counts less than 200 x 10(6) cells/l and plasma HIV-1-RNA levels of 50,000 copies/ml or greater. MEASUREMENTS: The primary efficacy outcome was the proportion of patients with at least a 1 log10 decrease (copies/ml) in the plasma HIV-1-RNA level after 12 weeks of therapy. RESULTS: Treatment interruption followed by multidrug salvage therapy led to a greater proportion of patients achieving virological success (i.e. 1 log10 decrease) at 12 weeks compared with patients receiving multidrug therapy alone (62 versus 26%, intent-to-treat analysis; P = 0.007). The median decrease in the HIV-1-RNA level was -1.91 and -0.37 log10 copies/ml (P = 0.008), respectively. Treatment interruption led to an increase in the number of sensitive drugs of the multidrug regimen (71 versus 35% of regimen with at least two sensitive drugs; P = 0.004). Factors associated with virological success were treatment interruption, the reversion of at least one mutation to wild type, adequate plasma drug concentration, and the use of lopinavir. CONCLUSION: Treatment interruption was beneficial for treatment-experienced HIV-infected patients with advanced HIV disease and multidrug-resistant virus.  相似文献   
86.
87.
Interictal or ictal events in partial epilepsies may project on scalp EEG contralaterally to the side of the epileptogenic lesion. Such paradoxical lateralization can be observed in case of para-sagittal generators, and is likely due to the spatial orientation of the generator, presenting an oblique projection towards the midline. We present here a case of medial occipital epilepsy investigated using EEG, MEG and stereoelectroencephalography (SEEG). MRI displayed a focal cortical dysplasia in the superior margin of the right calcarine fissure. SEEG demonstrated bilateral medial occipital interictal spikes, with an inversion of polarity at the level of the lesion and a contralateral propagation occurring in 10 ms. Interictal iterative EEG cartographies showed a large posterior field, with a maximum contralateral to the initial generator (EEG paradoxical lateralization). With the same number of channels, interictal iterative MEG cartographies were more precise and more complex than EEG ones, indicating an onset accurately lateralized. A few milliseconds later, MEG cartographies were quadripolar, thus indicating two homotopic active generators. These MEG and EEG cartographies have been reproduced using BESA dipole simulator. Relative merits of MEG and EEG are still debated. With 151 channels, MEG source localizations indicated the right medial occipital area, as demonstrated by SEEG. An investigation with a corresponding number of EEG channels was not performed. After a down sampling to 64 sensors, this precision was lost. MEG and EEG source localization results, both with 64 channels, were quite comparable, indicating both medial occipital areas. However, a careful analysis of MEG/EEG iterative cartographies, performed with the same number of channels in both modalities, demonstrated that, in this configuration, MEG sensitivity was superior to the EEG one, allowing separating two medial occipital sources, characterized in SEEG by a time delay of 10 ms.  相似文献   
88.
We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity.Outbreaks of 1997 avian influenza H5N1 and 2009 pandemic (p) H1N1 in humans have provided an opportunity to gain insight into cross-reactive immunity. The US military periodically collects and stores serum samples from service members linked to medical records.1 We measured cross-reactive antibodies in stored serum to avian influenza H5N1 and 2009 pH1N1 from US military personnel and identified factors associated with presence of neutralizing antibodies.Two hundred archived serum samples were obtained from the US Department of Defense Serum Repository. They were representative of a wide cross-section of active military personnel at the times of collection, whereas specific geographic information was not available on the individual selected; the cohort represents the general US military population, which is deployed throughout the United States and globally. Fifty samples each were selected from four birth cohorts: (1) < 1949, (2) 1960–1965, (3) 1966–1971, and (4) 1972–1977. Within each cohort, 25 samples were collected in the year 2000 (before the introduction of intranasal live attenuated influenza vaccine [LAIV]), and 25 samples were collected in 2008 (where 51% of donors had received LAIV). It has been suggested that LAIV elicits cross-reactive immunity.2,3 The samples were all collected before the outbreak of 2009 pH1N1, and there have not been any reported outbreaks of H5N1 in US military personnel.Assays used to measure antibodies included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay.4 Viral neutralization by antibodies against H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based (H5pp)5 and microneutralization assays, respectively. Electronic medical and vaccination records from the Defense Medical Surveillance System (DMSS), which captured records before the serum sample date, were linked to samples and compared with the in vitro results.1The odds ratios (ORs) and 95% confidence intervals (95% CIs) of univariate and multivariate binary logistic regression analyses were used to determine the association between donor characteristics and positive antibody responses. A multiple logistic regression model was constructed, and it included independent variables with a P value of < 0.05 in univariate logistic regression. A P value of < 0.05 was considered to indicate statistical significance. SPSS 12.0 for Windows (SPSS Inc., Chicago, IL) was used to perform all statistical analysis.Cross-reactivity is summarized in 5 and 22.5% for the NI assay. H5pp and NI antibody titers to H5N1 were evenly distributed among birth cohorts and did not differ substantially based on history of vaccination or prior respiratory infections. Of those individuals with neutralizing antibodies to H5N1 (N = 28), 32.1% also had neutralizing antibodies to pH1N1, whereas 19.3% of those individuals with any H5N1-specific antibody response also had neutralizing antibodies to pH1N1 (
Characteristics (n)H5N12009 pH1N1§
HI assay* % positive (GM titer)H5pp % positive (GM titer)NI assay % positive (GM titer)HI assay % positive (GM titer)Neutralization % positive (GM titer)NI assay % positive (GM titer)
Total
 2000.5 (5.1)14.0 (21.4)22.5 (121.6)5.5 (7.1)16.5 (20.4)9.0 (92.8)
Birth cohort
 1936–1949 (50)2.0 (5.3)18.0 (22.0)24.0 (126.0)6.0 (7.3)16.0 (19.5)12.0 (97.6)
 1960–1965 (50)0.0 (5.0)16.0 (20.3)26.0 (129.6)6.0 (7.7)30.0 (27.5)6.0 (90.3)
 1966–1971 (50)0.0 (5.0)12.0 (23.3)20.0 (117.9)10.0 (8.0)16.0 (23.6)10.0 (92.2)
 1972–1977 (50)0.0 (5.3)10.0 (20.0)20.0 (113.7)0.0 (5.7)4.0 (13.6)8.0 (91.5)
Serum collection year
 Y2000 (100)0.0 (5.1)15.0 (21.7)21.0 (120.3)7.0 (7.3)16.0 (20.6)11.0 (94.5)
 Y2008 (100)1.0 (5.2)13.0 (21.1)24.0 (123.0)4.0 (7.0)17.0 (20.1)7.0 (91.2)
Sex
 Female (32)3.1 (5.7)21.9 (26.3)12.5 (102.4)3.1 (6.9)12.5 (19.2)6.3 (96.7)
 Male (168)0.0 (5.0)12.5 (20.5)24.4 (125.7)6.0 (7.2)17.3 (20.6)9.5 (92.1)
Any cross-reactive antibody to
 H5N1 (57)8.8 (8.9)19.3 (25.2)22.8 (119.9)
 pH1N1 (45)2.2 (5.3)28.9 (31.2)37.8 (165.2)
Neutralizing antibodies to
 H5N1 H5pp (28)10.7 (9.5)32.1 (33.6)25.0 (116.9)
 2009 pH1N1 neutralization (33)3.0 (5.4)27.3 (28.9)30.3 (140.3)
Lifetime seasonal vaccinations
 No record (66)0.0 (5.1)10.6 (20.2)27.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
 1–5 vaccinations (88)1.1 (5.2)15.9 (21.5)17.0 (109.2)5.7 (7.1)17.0 (20.5)6.8 (89.1)
  > 5 vaccinations (46)0.0 (5.1)15.2 (22.2)32.6 (138.8)2.2 (6.8)17.4 (19.7)8.7 (95.0)
Time since last vaccine
 No record (66)0.0 (5.1)10.6 (20.2)22.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
  ≤ 1 year (96)0.0 (5.1)15.6 (21.5)24.0 (120.7)4.2 (7.1)19.8 (21.0)8.3 (91.2)
 > 1 year (38)2.6 (5.3)15.8 (22.4)18.4 (113.4)5.2 (6.8)10.5 (18.3)5.3 (90.6)
Vaccination history lifetime (at least one dose)
 No record of vaccination (66)0.0 (5.1)10.6 (20.2)22.7 (128.1)7.6 (7.4)15.2 (20.6)12.1 (96.5)
 Inactivated whole virus (71)0.0 (5.0)14.1 (20.4)22.5 (115.7)2.8 (6.4)15.5 (19.6)5.6 (87.1)
 Split type (102)1.0 (5.0)15.7 (20.4)21.6 (115.7)4.9 (6.4)19.6 (19.6)6.9 (87.1)
 Influenza vaccine not otherwise specified (16)0.0 (5.2)12.5 (27.9)37.5 (166.4)0.0 (6.2)6.3 (16.1)12.5 (102.3)
 Live attenuated intranasal (50)0.0 (5.1)10.0 (18.8)20.0 (112.2)4.0 (7.0)18.0 (20.3)4.0 (85.2)
History of respiratory illness
 No record of illness (119)0.0 (5.0)10.1 (18.5)18.5 (112.6)4.2 (7.0)15.1 (20.5)8.4 (90.7)
 Influenza-like illness (4)0.0 (5.0)25.0 (20.7)0.0 (80.0)0.0 (8.4)25.0 (28.3)25.0 (100.2)
 Upper respiratory infection (65)1.5 (5.4)23.1 (29.3)27.7 (135.0)7.7 (7.3)18.5 (20.7)9.2 (93.1)
 Lower respiratory infection (37)2.7 (5.6)18.9 (30.2)35.1 (157.6)8.1 (8.1)21.6 (22.4)13.5 (108.4)
 Respiratory illness past year (28)0 (5.1)25.0 (25.1)32.1 (154.9)7.1 (8.0)28.6 (24.4)3.6 (86.3)
Open in a separate windowTiters with a value of zero (below the detection limit) were assigned a value of five for calculation of geometric means (GMs).*H5N1, A/Vietnam/1203/2004; positive titer ≥ 40.H5 hemagglutinin (A/Cambodia/408008/05) pseudotyped lentiviral particle; positive titer ≥ 160.Reassortant H1N1 (HA, PB1, PB2, PA, NP, and M from H1N1 [A/PR/8/34]; N1 from H5N1 [A/Vietnam/DT-036/2005]); positive titer ≥ 160.§2009 H1N1, A/California/04/2009; same positive titer cutoffs as for H5N1.As with H5N1, samples with positive HI titers were low for 2009 pH1N1 at 5.5%, whereas neutralizing antibody titers were higher, with 16.5% positive in the microneutralization assay but only 9% positive in the NI assay. Positive neutralization titers were less evenly distributed among birth cohorts, with only 4% positive in the 1972–1977 birth cohort, whereas 30% were positive in the 1960–1965 cohort. Like H5N1, positive antibody titers to 2009 pH1N1 did not differ substantially based on history of vaccination or prior respiratory infections. Of those individuals with neutralizing antibodies to pH1N1 (N = 33), 27.3% also had neutralizing antibodies to H5N1, whereas 28.9% of those individuals with any pH1N1-specific antibody response also had neutralizing antibodies to H5N1.Univariate associations between the prevalence of cross-reactive antibodies to H5N1 and 2009 pH1N1 and independent variables, including year of birth, serum collection year, sex, and seasonal influenza vaccination history, are shown in Characteristic (n)2009 pH1N1H5N1PrevalenceOR (95% CI)Adjusted OR (95% CI)PrevalenceOR (95% CI)Positive neutralizing antibody33 (16.5%)28 (14.0%)Serum collection year 2000 (100)16 (16.0%)ReferenceReference15 (15.0%)Reference 2008 (100)17 (17.0%)1.1 (0.5–2.3)0.7 (0.3–1.8)13 (13.0%)0.9 (0.4–1.9)Birth cohort 1936–1949 (50)8 (16.0%)4.6 (0.9–22.7)5.3 (1.0–27.0)9 (18.0%)2.0 (0.6–6.4) 1960–1965 (50)15 (30.0%)10.3 (2.2–47.9)11.0 (2.3–52.9)8 (16.0%)1.7 (0.5–5.7) 1966–1971 (50)8 (16.0%)4.6 (0.9–22.7)5.1 (1.0–26.2)6 (12.0%)1.2 (0.4–4.3) 1972–1977 (50)2 (4.0%)ReferenceReference5 (10.0%)ReferenceSex Female (32)4 (12.5%)Reference7 (21.9%)Reference Male (168)29 (17.3%)1.5 (0.5–4.5)21 (12.5%)0.5 (0.2–1.3)Positive neutralizing antibody titers H5pp (57)11 (19.3%)1.3 (0.6–2.9) pH1N1 (45)13 (28.9%)3.8 (1.6–8.7)Vaccination record Number of seasonal influenza vaccinations  No record (66)10 (15.2%)Reference7 (10.6%)Reference  1–5 vaccinations (88)15 (17.0%)1.2 (0.5–2.8)14 (15.9%)1.6 (0.6–4.2)  > 5 vaccinations (46)8 (17.4%)1.2 (0.4–3.3)7 (15.2%)1.5 (0.5–4.7) Time since last vaccination  No record (66)10 (15.2%)Reference7 (10.61%)Reference   ≤ 1 year (96)19 (19.8%)1.4 (0.6–3.2)15 (15.6%)1.6 (0.6–4.1)  > 1 year (33)4 (10.5%)0.7 (0.2–2.3)6 (15.8%)1.6 (0.5–5.1) Number of inactivated whole virus vaccinations  No record (129)22 (17.1%)ReferenceReference18 (14.0%)Reference  1–5 vaccinations (53)4 (7.5%)0.4 (0.1–1.2)0.4 (0.1–1.4)7 (13.2%)0.9 (0.4–2.4)  > 5 vaccinations (18)7 (38.9%)3.1 (1.1–8.9)4.4 (1.3–15.6)3 (16.7%)1.2 (0.3–4.7) Time since last inactivated whole virus vaccination  No record (129)22 (17.1%)Reference18 (14.0%)Reference   ≤ 1 year (19)4 (21.1%)1.3 (0.4–4.3)3 (15.8%)1.2 (0.3–4.4)  > 1 year (52)7 (13.5%)0.8 (0.3–1.9)7 (13.5%)1.0 (0.4–2.5) Number of split type vaccinations  No record (98)13 (13.3%)Reference12 (12.2%)Reference  1–5 vaccinations (94)19 (20.2%)1.7 (0.8–3.6)14 (14.9%)1.3 (0.6–2.9)  > 5 vaccinations (8)1 (12.5%)0.9 (0.1–8.2)2 (25.0%)2.4 (0.4–13.2) Time since last split type vaccination  No record (98)13 (13.3%)Reference12 (12.2%)Reference   ≤ 1 year (44)10 (22.7%)1.9 (0.8–4.8)10 (22.7%)2.1 (0.8–5.3)  > 1 year (58)10 (17.2%)1.4 (0.6–3.3)6 (10.3%)0.8 (0.3–2.3) Number of intranasal LAIV vaccinations  No record (150)24 (16.0%)Reference23 (15.3%)Reference  1–5 vaccinations (50)9 (18.0%)1.2 (0.5–2.7)5 (10%)0.6 (0.2–1.7) Time since last intranasal LAIV vaccination  No record (150)24 (16.0%)Reference23 (15.3%)Reference   ≤ 1 year (34)7 (20.6%)1.4 (0.5–3.5)3 (8.8%)0.5 (0.2–1.9)  > 1 year (16)2 (12.5%)0.8 (0.2–3.5)2 (12.5%)0.8 (0.2–3.7)Open in a separate windowTo the best of our knowledge, the present study is the first report of cross-reactive antibodies to both H5N1 and 2009 pH1N1 in a US military population. Cross-reactive antibodies to both influenza viruses were common in this population. Most serum samples (86%) positive in the H5N1 neutralization assay had no detectable HI activity (titer ≥ 10), whereas 94% of samples that neutralized 2009 pH1N1 also had detectable HI activity (titer ≥ 10; data not shown). In addition, cross-reactive antibodies to avian influenza H5N1 were not necessarily accompanied by cross-reactive antibodies to 2009 pH1N1. Taken together, these findings suggest that the observed cross-reactive neutralization against the two influenza viruses was caused by different antibodies in serum samples.This report is also the first report to associate history of receiving more than five doses of inactivated whole influenza virus vaccine with neutralizing antibodies against 2009 pH1N1. This finding suggests a protective advantage of repeated vaccination with seasonal whole virus vaccine, generating cross-reactive antibodies against previously unencountered strains. It has been suggested that the high immunogenicity of the inactivated whole virus vaccine is partly caused by the adjuvant effect of the viral RNA presented, stimulating innate immunity through the Toll-like receptor (TLR) 7-dependent pathway.6 We hypothesize that the combined effect of adjuvant activity and the heterogenous mix of flu strains that an individual would be exposed to over the course of multiple seasonal vaccinations may enhance the breadth of antibody response and promote the generation of cross-reactive antibodies.A retrospective case-control study conducted in US military personnel after the outbreak of 2009 pH1N1 showed that both 2008–2009 seasonal influenza vaccine and history of seasonal vaccine in the prior 4 years afforded some protection against pH1N1. Vaccine effectiveness (VE) was high in persons ≥ 40 (55%) or < 25 (50%) years of age but very low in persons 25–39 years of age (< 10%).7 These findings correlate with the high levels of cross-reactive 2009 pH1N1 antibodies reported here, with 30% in the 1960–1965 cohort (age range = 35–48) but only 4% in the 1972–1977 cohort (age range = 23–36). Our findings are similar to the results found recently in an elderly population in the United States.8 The exception is in those individuals born before 1950, in whom antibody responses were much higher in this cohort. Both our study and the US study differ from two recent seroprevalence studies in Singapore and China, where cross-reactive antibodies were rare in various age groups.9,10 High seasonal influenza vaccination rates in US military personnel found here and prior studies11 may explain the differences observed in these populations, although results from small retrospective seroprevalence studies should be interpreted cautiously. Possible alternative explanations include differences in laboratory assay methods, natural influenza exposure in the sampled populations, and/or use of convenience sampling methods.Studies in humans suggest that the antibody to influenza neuraminidase is associated with resistance to influenza.12 A recent serological study in a small number of human serum samples showed that 24% had cross-reactive antibodies to avian N1,13 similar to our findings (22.5%). In addition, we observed that 9% of serum samples had cross-reactive antibodies to pH1N1.Like pH1N1, persons < 40 years old seem to be most affected by H5N1 infection, with infection rarer in older individuals.14 However, we did not find a difference in cross-reactive antibody prevalence to either neuraminidase or neutralizing antibodies (H5pp) with year of birth or other immunologic markers of exposure, including vaccination history or prior respiratory illness.A possible limitation of our study is that the DMSS may not have captured all relevant medical encounter and/or vaccination data, particularly for encounters that were not entered into the system electronically or coded accurately. Data in the DMSS are provider-dependent, and the DMSS captures data from various historical time periods, dating back to 1980 for immunization data, 1985 for Department of Defense Serum Repository specimens, 1990 for demographic data, and only 1996 for outpatient data. Interpretation of data presented on history of respiratory illness, which is entirely dependent on voluntary provider reporting and International Classification of Diseases (ICD-9) coding, is particularly limited by lack of virologic confirmation.Cross-reactive immunity to pathogenic influenza strains was found in a subset of US military service members, and it may serve to prevent or reduce the severity of influenza. A better understanding of the mechanisms underlying the development of cross-reactive antibodies will aid in the development of more effective preventive and therapeutic measures.  相似文献   
89.
Microparticle bearing tissue factor: A link between promyelocytic cells and hypercoagulable state     
Damien Gheldof  François Mullier  Nicolas Bailly  Bérangère Devalet  Jean-Michel Dogné  Bernard Chatelain  Christian Chatelain 《Thrombosis research》2014
Patients with hematological malignancies have a 28-fold increased risk of venous thromboembolism (VTE). Among patients with acute myelogenous leukemia (AML), the 2-year cumulative incidence of VTE is 5.2%. Several studies suggest that microvesicles (MVs) harboring TF may play a role in VTE and disseminated intravascular coagulation (DIC) in acute promyelocytic leukemia (APL).  相似文献   
90.
Viral hepatitis at a crossroad     
Lok AS  Pawlotsky JM 《Gastroenterology》2012,142(6):1261-1263
  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号