首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   6篇
耳鼻咽喉   2篇
基础医学   28篇
口腔科学   209篇
临床医学   1篇
内科学   8篇
神经病学   5篇
特种医学   1篇
外科学   3篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   11篇
  2013年   14篇
  2012年   8篇
  2011年   16篇
  2010年   2篇
  2009年   6篇
  2008年   23篇
  2007年   25篇
  2006年   21篇
  2005年   26篇
  2004年   17篇
  2003年   14篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
排序方式: 共有257条查询结果,搜索用时 19 毫秒
41.
The aim of this study was to evaluate the effect of fiber-reinforced composite (FRC) at the interface on bonding of resin core systems to bovine dentin using different adhesive systems. To this end, the labial surfaces of 60 bovine incisors were ground to obtain flat dentin surfaces and then divided into two groups according to the adhesive system used: total-etching (Solobond Plus) versus self-etching (Clearfil SE Bond). Resin core systems were bonded to tooth structure either without or with a FRC layer (everStick Net, StickTech). For groups with FRC layer, a silicon forming aid was used to adapt the latter on the dentin surfaces. After resin core was polymerized with Optilux 501 for 40 seconds, the specimens were tested in a universal testing machine. ANOVA revealed that presence of FRC at the interface had a significantly positive effect on bond strength (p < 0.001). However, differences between groups were not significant for either adhesive system (p = 0.076) or with the use of silicon forming aid (p = 0.348).  相似文献   
42.
OBJECTIVES: The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers on some mechanical properties of dental composite resin with interpenetrating polymer network (IPN)-polymer matrix. MATERIALS AND METHODS: Experimental composite resin was prepared by mixing short fibers (3mm in length) with a fraction of 22.5 wt% and IPN-resin 22.5 wt% with silane treated silica filler 55 wt% using high speed mixing machine. Test specimens (2 mm x 2 mm x 25 mm) and (9.5 mm x 5.5 mm x 3 mm) were made from the experimental composite (FC) and conventional particulate composite resin (control, Z250, 3M-ESPE). The test specimens (n=6) were either dry stored or water stored (37 degrees C for 30 days) before the mechanical tests. Three-point bending test was carried out according to ISO 10477 and compression loading test was carried out using a steel ball (?3.0mm) with speed of 1.0mm/min until fracture. Degree of monomer conversion (DC%) of both composites was determined by FTIR spectrometry. Water sorption and solubility of specimens were also measured. Scanning electron microscopy was used to evaluate the microstructure of the composite. RESULTS: ANOVA revealed that experimental fiber composite had statistically significantly higher mechanical performance of flexural strength (210 MPa) and compressive load-bearing capacity (1881 N) (p < 0.05) than control composite (111 MPa, 1031 N). Degree of conversion of the FC (59%) and conventional composite (57%) was at the same range. SIGNIFICANCE: The use of short fiber fillers with IPN-polymer matrix yielded improved mechanical performance compared to conventional restorative composite.  相似文献   
43.
STATEMENT OF PROBLEM: Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. PURPOSE: The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. MATERIAL AND METHODS: Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. RESULTS: The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P < .0001). Scanning electron microscopy highlighted fiber- and polymer-rich areas within the specimens and indicated that individual fibers were well impregnated with resin. The combustion analysis studies identified the fiber content to be 35.9 vol%. CONCLUSION: The results of this study suggest that the fatigue resistance of the fiber-reinforced material examined was increased; however, the reduction in flexural modulus of fiber-reinforced composites may restrict their use where high rigidity is required, such as in removable partial denture clasps.  相似文献   
44.
The aim of this study was to investigate the influence of the position of the fiber rich layer on the flexural properties of fiber-reinforced composite (FRC) construction. In addition, the total residual monomer content of FRC was quantitatively determined to find out the difference of the effectiveness of two types of light-curing units using liquid chromatography (HPLC). Unidirectional continuous E-glass FRC and hybrid particulate filler composite resins were used in the fabrication of test specimens. Four different positions of the FRC layer were used: compression, neutral, tension, and vertical side position. A three-point bending test (ISO 10477) was performed to measure the flexural properties of the specimens. Position of the FRC layer had a significant effect on the flexural strength (p<0.001, ANOVA). Also, the type of light-curing device had an effect on flexural strength (p<0.001). Specimens with FRC positioned on the compression side showed flexural strength of approximately 250 MPa, whereas FRC positioned on the tension side showed strength ranging from 500 to 600 MPa. Mean flexural modulus with FRC placed horizontally ranged between 9-12 GPa; no significant difference was found between these groups. However when fiber reinforcement was positioned vertically, the flexural modulus raised up to 16 GPa. Specimens with 24 vol% glass fibers contained 52% less residual monomer than specimens without glass fibers. The monomer content was lower in specimens polymerized with the curing device with higher polymerization temperature. In order to optimize flexural strength of low fiber volume fraction, the fibers should be placed at the tension side of the specimen.  相似文献   
45.
The Second Scientific Fibre Reinforcement Symposium was held in Nijmegen, The Netherlands, on October 13th, 2001. The participants were invited speakers with extensive scientific and clinical backgrounds in glass fiber and polyethylene fiber research. The symposium reports focused on four areas of fiber reinforcement research: materials development, laboratory testing, clinical systems development, and clinical data. The consensus reached on the current status and future directions of this technology is reported here.  相似文献   
46.
ObjectivesTo evaluate the long-term effect of chlorhexidine (CHX) and dimethyl sulfoxide (DMSO) on the sealing ability and biomineralization of two different calcium silicate cements (CSC) in root canal.MethodsSixty human third molar root canals were obturated with ProRoot MTA or Biodentine. Before obturation the canals were irrigated with saline (control), 2% CHX or 5% DMSO. Microleakage was tested after three days and after six months. After additional six months (12 months after root filling) the roots were cut into 2 mm thick dentine discs. The discs were stored in artificial saliva for one year. The bond strength was measured with the push-out method, and the failure mode was evaluated with a stereomicroscope. The most apical disc of each tooth was used for Vickers hardness test.ResultsNo significant differences between the groups was found in initial microleakage. The leakage increased significantly during the 6-month storage in all groups except in Biodentine-CHX group and Biodentine-DMSO group. CHX and DMSO irrigation significantly increased the leakage with ProRoot MTA with time, but there was no statistically significant difference compared to the ProRoot MTA-control group at six months’ time point. CHX significantly reduced the push-out bond strength of ProRoot MTA. With Biodentine irrigation with CHX or DMSO resulted with significantly higher push-out strength compared to the Biodentine control group. Fracture analysis showed statistically significant difference in the distribution of the fractures between the groups, but neither CHX nor DMSO change the fracture pattern statistically significantly. With Vickers hardness test ProRoot MTA with and without DMSO as the final irrigant showed significantly higher dentin hardness than any Biodentine-group.SignificanceConsidering that aging increased the leakage in all groups except with Biodentine-DMSO and the differences in the push-out strength and surface microhardness data, it appears that the time-related biomineralizing effect of MTA and Biodentine does not improve sealing to dentin. CHX significantly reduced ProRoot MTA bond strength and increased pure adhesive failures with both cements.  相似文献   
47.
Purpose This study compared weave patterns and glass compositions of five glass fiber materials found in commercial fiber-reinforced dental composites. Materials and Methods A scanning electron microscope (SEM) was used to investigate the woven structure of five glass fiber products, and an energy-dispersive x-ray spectrometer (SEM/EDS) was used to determine the elemental composition of these glass fibers in the bulk and at the surface of the fiber. Five fibers of each product were analyzed. Results The fiber products were either unidirectional rovings or bidirectional weaves. More precisely, the woven structures were linen weave, twill weave, or twill weave ribbon. SEM/EDS analysis revealed that the composition of the glass fibers was typical for E (electrical)-glass fibers with one exception. One product intended for use in fixed prosthodontics included unidirectional fibers with a composition consistent with a modified high-tensile-strength R-glass. Boron oxide found on the surface of glass fibers would likely contribute to an increased potential for corrosion of fiber-reinforced composite. Conclusions The predominant fiber composition in these products is E-glass. Because the degree of hydrolytic stability of polymer-fiber composites over time may lead to material failure in permanent restorations, this property should be investigated further.  相似文献   
48.
The aim of this study was to determine the tensile strength and E-modulus of unidirectional denture glass fibre–polymethyl methacrylate (GF–PMMA) composite with various fibre contents. The experimental values of tensile strength and E-modulus were compared with values obtained by a theoretical calculation. Autopolymerized PMMA test specimens (n = 6, per group) were reinforced with unidirectional E-glass fibres which had been wetted in a mixture of PMMA powder and monomer liquid. After storing the test specimens for 40 days in water at 37 °C, the tensile strength and E-modulus of the test specimens were measured. The increased amount of fibres in the PMMA matrix (up to 14·8% by weight) increased the mean tensile strength of the test specimens from 40·5 MPa to 91·2 MPa (P < 0·001) and the E-modulus from 2057 MPa to 3751 MPa (P < 0·001). The experimental tensile strength and E-modulus values were considerably lower than those based on the theoretical calculations. This was assumed to be due to the percentage of glass fibres unimpregnated with the PMMA resin. The presence of unimpregnated glass fibres was determined using light microscopy. The results of this study suggest that a new method of incorporating the glass fibres into the PMMA resin matrix should be developed in order to obtain a well-impregnated fibre composite reinforcement with high durability.  相似文献   
49.
50.
Statement of problemInformation on the mechanical properties of the materials used for manufacturing computer-engineered complete dentures is scarce.PurposeThe purpose of this in vitro study was to evaluate the mechanical properties of 3 prepolymerized polymethyl methacrylate (PMMA) resins used in the fabrication of computer-aided design and computer-aided manufacturing (CAD-CAM) milled complete dentures (CDs), as well as 2 denture base polymers used for conventionally fabricated CDs.Material and methodsThree CAD-CAM materials were evaluated: Degos Dental L-Temp, IvoBase CAD, and Zirkonzahn Temp Basic Tissue. Two materials used for conventionally manufactured dentures were also included as controls (Palapress and Paladon 65). Each material type was sectioned into bars for flexural strength, nanohardness, elastic modulus, and surface microhardness evaluation (n=8/material). Half of the specimens were stored in water for 30 days, while the other half was dry-stored. A 2-way ANOVA was conducted to detect the effect of material and storage on the evaluated properties (α=.05). Linear contrasts were conducted to compare the differences among the 3 types of CAD-CAM material and the conventional ones.ResultsMaterial type and storage had a significant influence on the flexural strength, nanohardness, elastic modulus, and surface hardness of the materials investigated (P<.001). The post hoc Scheffé test for flexural strength revealed a nonsignificant difference in the interaction between Degos L-Temp and Paladon (P=1.000). In terms of nanohardness, no difference was found when comparing Palapress with Paladon, as well as IvoBase CAD with Zirkonzahn Temp Basic (P=1.000). A nonsignificant interaction in terms of surface hardness was also found between IvoBase CAD and Palapress (P=.575).ConclusionsThe tested materials showed variation in their mechanical properties, with satisfactory behavior of the CAD-CAM materials. However, the results obtained when testing the materials used for the conventional fabrication of complete dentures suggest that their use might still be advisable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号