首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
儿科学   1篇
基础医学   7篇
神经病学   30篇
药学   1篇
肿瘤学   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1992年   1篇
  1990年   2篇
  1988年   4篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Monoclonal antibodies against human and bovine 2′:3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) were generated by fusing FOX-NY myeloma cells with spleen cells from RBF/Dn mice previously immunized with the purified brain antigens. The enzyme isolated from bovine brain was quite basic, with an isoelectric point of 9.71 and both the bovine and human enzymes consisted of a closely spaced doublet at approximately 44 and 46 kDa on SDS-PAGE. Six monoclonals were identified as strongly recognizing the enzyme on both ELISA plates and on immunoblots of whole brain protein. Four monoclonals very weakly cross-reacted with guinea pig myelin basic protein. In contrast with two previous reports, some of our monoclonal antibodies did immunostain 2 or 3 protein bands in peripheral nerve, two bands closely corresponding to those immunostained in central nervous system (CNS) myelin, the Wolfgram protein fraction and in acetone powders of whole brain. Each of the 6 monoclonals reacting strongly on immunoblots recognized the enzyme in from 2 to 5 of the species examined (human, bovine, rat, mouse and rabbit). In addition, all 6 monoclonals that immunostained the enzyme in whole brain, myelin and Wolfgram protein immunoblots recognized both CNP1 (44 kDa) and CNP2 (46 kDa). The two closely spaced protein bands observed on SDS-PAGE and previously stained on immunoblots of CNS CNPase using polyvalent rabbit anti-bovine CNPase antisera, and now different monoclonal antibodies, appear to be immunologically related and to contain highly conserved sequences.  相似文献   
2.
Thyroid hormone (T3) deficiency impairs the development of the CNS, particularly myelination. We have previously described an increase in the frequency of morphological abnormalities in the central myelin sheath in a hypothyroidism model, which reinforced the hypothesis of a role for T3 in myelin compaction. However, there are no data concerning the cellular distribution of myelin proteins in hypothyroid animals. In the present work, we describe the distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), myelin basic protein (MBP) and proteolipid protein (PLP) throughout the central myelin sheath of a hypothyroidism model. We used euthyroid and hypothyroid adult rats at 90 days of age. In order to induce hypothyroid status, animals received 0.02% methimazol from the 19th gestation day onwards. After perfusion with a fixative mixture, small pieces of corpus callosum were obtained, dehydrated and embedded in LR White resin. Ultrathin sections were immunoreacted, using specific antibodies revealed by a secondary antibody coupled to colloidal gold particles of 10 nm. Gold particle density per region of myelin sheath for each one of these proteins was obtained. In normal animals, CNPase, PLP and MBP were identified in sites that had already been described in previous studies. In hypothyroid animals, CNPase was identified in the region corresponding to compact lamellae, which normally does not contain this protein, while, in this same region, PLP and MBP immunolabeling were decreased. These results suggest that thyroid hormone deficiency impairs the distribution of the major oligodendrocyte/myelin markers. This effect may justify the reduction in myelin sheath compaction previously demonstrated in a similar model of hypothyroidism.  相似文献   
3.
Activation of N-methyl-D-aspartate (NMDA) receptors can induce tetrodotoxin (TTX)-resistant membrane potential oscillations as well as fictive locomotion in the in vitro preparation of the lamprey spinal cord. The ionic basis of these oscillations were investigated in the presence of N-methyl-D,L-aspartate and TTX. Addition of blocking agents (2-amino-5-phosphonovalerate and tetraethylammonium (TEA)) and selective removal or substitution of certain ions (Mg2+, Ca2+, Na+, Ba2+) were used in the analysis of the oscillations. The depolarizing phase of the oscillation requires Na+ ions but not Ca2+ ions. The depolarization becomes larger if TEA is administered in the bath, which presumably is due to a blockade of potassium (K+) channels activated during the depolarizing phase. The repolarization appears to depend on a Ca2+ entry, which presumably acts indirectly by an activation of Ca2+-dependent K+ channels. Together with the NMDA-induced voltage dependence, this will bring the membrane potential back down to a hyperpolarized level.  相似文献   
4.
Glutathione S-transferase (GST)-pi is a cytosolic isoenzyme used as a marker for mature oligodendrocytes in the mammalian brain. However, the cellular properties of GST-pi-immunoreactive [GST-pi (+)] cells in adult brain are not completely understood. We immunohistochemically demonstrated the existence of two subtypes of GST-pi (+) cells in the cerebral cortex of adult rats: one subtype exhibited GST-pi in the cytoplasm (C-type cells), while the other did mainly in the nucleus (N-type cells). The GST-pi (+) C-type cells were also immunopositive for 2',3'-cyclic nucleotide 3'-phosphodiesterase and RIP, indicating that they were mature oligodendrocytes, while the GST-pi (+) N-type cells expressed NG2, indicating that they were oligodendrocyte progenitor cells. Furthermore, observation of the fate of newly-generated cells by 5-bromodeoxyuridine-labeling revealed that the GST-pi (+) N-type cells differentiated into C-type cells. These findings indicate translocation of GST-pi from the nucleus to the cytoplasm during oligodendrocyte maturation.  相似文献   
5.
Thyroid hormones are critical for maturation of the central nervous system. In a previous study, we showed a change in the pattern of mature myelinated nerve fibers by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in developing hypothyroid animals, which suggests a possible role for thyroid hormones in myelin compaction. The classical myelin markers myelin basic protein (MBP) and proteolipidic protein (PLP) are expressed later in oligodendroglial development, when myelin sheath formation is in progress. A myelin constituent designated myelin-associated/oligodendrocytic basic protein (MOBP) has been identified and related to myelin compaction. We assessed the developmental sequence of appearance of CNPase, MBP, MOPB, and PLP proteins in cerebellum (Cb) and corpus callosum (cc) in an experimental hypothyroidism model. The appearance of both MOBP isoforms occurred at postnatal day (P)25 and P30 in cc and Cb, respectively, followed by an increase with age in the control group. However, all the MOBP isoforms were weakly detectable in both regions at P30 from the hypothyroid (H) group, and the higher molecular weight isoform remains decreased in cc, even at P90. The developmental pattern of expression of CNPase, MBP, and PLP proteins was also delayed in the H group. CNPase and MBP expression was recovered in cc and Cb, whereas PLP remained below control levels at P90 in cc. Our data show that the experimental hypothyroidism affects the developmental pattern of the oligodendrocytic/myelin markers. Furthermore, thyroid hormone may modulate specific genes, as demonstrated by permanent down-regulation of MOBP and PLP expression in adulthood.  相似文献   
6.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is important for both long-term survival and timing of the progression of oligodendrocyte differentiation. Oligodendroglial cells treated with MEK inhibitor were distinguished by using stage specific markers: NG2 proteoglycan, A2B5, 2′3′nucleotide-cyclic 3′phosphodiesterase (CNPase) and myelin basic protein (MBP), and classified according to their morphology into different developmental stages. Treatment significantly increased the number of cells with more immature morphologies and decreased the number of mature cells. Furthermore, it increased the number of rounded cells that could not be classified into any of the oligodendroglial developmental stages. The strongest effects were usually observed shortly after treatment. Rounded cells were CNPase/MBP positive and they were not stained by anti-NG2 or A2B5, indicating that they were mature cells unable either to extend and/or to maintain their processes. These data showed an effect of the MAPK/ERK pathway on oligodendroglial branching, with possible consequences for the formation of the myelin sheath.  相似文献   
7.
Abstract Neurochemical aspect of mental retardation is described, with special reference to phenylketonuria (PKU) as a cause of the inhibition of brain development. Biochemical and behavioral findings are outlined in S few animal models of PKU, including that of "maternal PKU" in which genetically normal offspring of rats with experimental PKU show significantly lowered discrimination learning ability. Possible roles of disordered amino acid metabolism and defective myelination in the inhibited brain development are briefly discussed.  相似文献   
8.
White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.  相似文献   
9.
Wu CY  Lu J  Cao Q  Guo CH  Gao Q  Ling EA 《Neuroscience》2006,142(2):333-341
Expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in amoeboid microglial cells (AMC) in developing rat brain from prenatal day 18 (E18) to postnatal day 10 (P10) was demonstrated by immunohistochemistry/immunofluorescence and immunoelectron microscopy both in vivo and in vitro, respectively. Furthermore, real time-polymerase chain reaction (PCR) was performed to determine the expression of CNPase at mRNA level in cultured microglial cells in control conditions and following lipopolysaccharide stimulation. CNPase immunoreactive amoeboid microglia occurred in large numbers in the corpus callosum, subventricular zone and cavum septum pellucidum at P0 but were progressively reduced with age and were undetectable at P14. By immunoelectron microscopy, immunoreaction product was associated primarily with the plasma membrane, filopodial projections and mitochondria in AMC. Real time-PCR analysis revealed that CNPase mRNA was expressed by cultured amoeboid microglia and was significantly up-regulated in microglial activation induced in vitro by lipopolysaccharide. The functional role of CNPase in AMC remains speculative. Given its expression in AMC transiently occurring in the perinatal brain and that it is markedly elevated in activated microglia, it is suggested that the enzyme may be linked to the major functions of the cell type such as release of chemokines and cytokines. In relation to this, CNPase may play a key role associated with transportation of cytoplasmic materials.  相似文献   
10.
Epidemiological evidence in human fetuses links inflammation during development with white matter damage. Breakdown of the blood-brain barrier has been proposed as a possible mechanism. This was investigated in the present study by inducing a prolonged inflammatory response in newborn rats, with intraperitoneal injections of lipopolysaccharide (LPS; 0.2 mg/kg) given at postnatal (P) day 0, P2, P4, P6 and P8. An acute phase response was present over the whole period of injections. Changes in blood-brain barrier permeability were determined for small (sucrose and inulin) and large (protein) molecules. During and immediately after the inflammatory response, plasma proteins were detected in the brain only within white matter tracts, indicating an increased permeability of the blood-brain barrier to protein during this period. The alteration in permeability to protein was transient. In contrast, the permeability of the blood-brain barrier to 14C-sucrose and 14C-inulin was significantly higher in adult animals that had received serial LPS injections during development. Adult animals receiving a single 1 mg/kg LPS injection at P0 showed no alteration in blood-brain barrier permeability to either small or larger molecules. A significant decrease in the volume of CNPase immunoreactive presumptive white matter tracts occurred in the external capsule and corpus callosum at P9. These results demonstrate that a prolonged systemic inflammatory response in the early postnatal period in rats causes size selective increases in blood-brain barrier permeability at different stages of brain development and results in changes in white matter volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号