首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
临床医学   27篇
外科学   2篇
  2023年   1篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Bubble-induced color Doppler (BCD) is a histotripsy-therapy monitoring technique that uses Doppler ultrasound to track the motion of residual cavitation nuclei that persist after the collapse of the histotripsy bubble cloud. In this study, BCD is used to monitor tissue fractionation during histotripsy tissue therapy, and the BCD signal is correlated with the destruction of structural and non-structural components identified histologically to further understand how BCD monitors the extent of treatment. A 500-kHz, 112-element phased histotripsy array is used to generate approximately 6-?×?6-?×?7-mm lesions within ex vivo bovine liver tissue by scanning more than 219 locations with 30–1000 pulses per location. A 128-element L7-4 imaging probe is used to acquire BCD signals during all treatments. The BCD signal is then quantitatively analyzed using the time-to-peak rebound velocity (tprv) metric. Using the Pearson correlation coefficient, the tprv is compared with histologic analytics of lesions generated by various numbers of pulses using a significance level of 0.001. Histologic analytics in this study include viable cell count, reticulin-stained type III collagen area and trichrome-stained type I collagen area. It is found that the tprv metric has a statistically significant correlation with the change in reticulin-stained type III collagen area with a Pearson correlation coefficient of ?0.94 (p?<0.001), indicating that changes in BCD are more likely because of destruction of the structural components of tissue.  相似文献   
2.
Boiling histotripsy (BH) is an experimental focused ultrasound technique that produces non-thermal mechanical ablation. We evaluated the feasibility, short-term histologic effects and the resulting acute inflammatory response to BH ablation of renal cell carcinoma (RCC) in the Eker rat. Genotyped Eker rats were monitored for de novo RCCs with serial ultrasound (US) imaging. When tumors were ≥8 mm, rats underwent ultrasound-guided extracorporeal ablation of the tumor with BH, a pulsed focused US technique that produces non-thermal mechanical ablation of targeted tissues, or a sham US procedure. Treatments targeted approximately 50% of the largest RCC with a margin of normal kidney. BH treated rats were euthanized at 1 (n?=?4) or 48 (n?=?4) h, and sham patients (n?=?4) at 48 h. Circulating plasma cytokine levels were assessed with multiplex assays before and at 0.25, 1, 4, 24 and 48 h following treatment. Kidneys were collected and processed for histologic assessment, immunohistochemistry and intrarenal cytokine concentration measurements. For statistical analysis Student's t-test was used. US-guided BH treatment was successful in all animals, producing hypoechoic regions within the targeted volume consistent with BH treatment effect. Grossly, regions of homogenized tissue were apparent with evidence of focal intra-parenchymal hemorrhage. Histologically, BH produced a sharply demarcated region of homogenized tumor and non-tumor tissue containing acellular debris. BH treatment was associated with significantly increased relative concentration of plasma TNF versus sham treatment (p < 0.05) and transient elevations in high-mobility group box 1 (HMGB1), IL-10 and IL-6 consistent with acute inflammatory response to trauma. Intrarenal cytokine concentrations followed the same trend. At 48 h, enhanced infiltration of CD8+ T cells was observed by immunohistochemistry in both the treated and un-treated contralateral RCC/kidneys in BH-treated animals versus sham treatment. BH treatment was well tolerated with transient gross hematuria and a perinephric hematoma developing in one subject each. The study demonstrates the feasibility of BH ablation of de novo RCC and suggests activation of the acute inflammatory cascade following treatment that appears to stimulate CD8+ T cell infiltration of both treated and untreated tumors. Longer duration chronic studies are ongoing to characterize the longevity and robustness of this response.  相似文献   
3.
This study investigates the safety profile for use of histotripsy, a non-invasive ultrasonic ablation method currently being developed for the treatment of liver cancer, for liver ablation in an in vivo porcine model. Histotripsy treatments were applied to the liver and hepatic veins of 22 porcine subjects, with half of the subjects receiving systemic heparinization. Vital signs (heart rate, blood pressure, temperature, electrocardiogram and SpO2) were monitored throughout the procedure and for 1 h post-treatment. Blood was drawn at six points during the experiment to analyze blood gases, liver function and free hemoglobin levels. All treatments were guided and monitored by real-time ultrasound imaging. After treatment, the tissue was harvested for histological analysis. Results indicated that histotripsy generated well-defined lesions inside the liver and around the treated hepatic veins of all subjects in both treatment groups. Vital signs and blood analysis revealed that animals responded well to histotripsy, with all animals surviving the treatment. One animal in the non-heparinized group had a transient increase in pH and decreases in blood pressure, heart rate and PCO2 during the 15-min vessel treatment, with these changes returning to baseline levels soon after the treatment. Overall, the results indicate that histotripsy can safely be performed on the liver without the need for systemic heparinization, even in regions containing large hepatic vessels, supporting its future use for the treatment of liver cancer.  相似文献   
4.
Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation.  相似文献   
5.
6.
Histotripsy is a developing focused ultrasound procedure that uses cavitation bubbles to mechanically homogenize soft tissue. To better understand the mechanics of tissue damage, a numerical model of single-bubble dynamics was used to calculate stress, strain and strain rate fields produced by a cavitation bubble exposed to a tensile histotripsy pulse. The explosive bubble growth and its subsequent collapse were found to depend on the properties of the surrounding material and on the histotripsy pulse. Stresses far greater than gigapascals were observed close to the bubble wall, but attenuated by four to six orders of magnitude within 50 μm from the bubble wall, with at least two orders of magnitude attenuation occurring within the first 10 μm from the bubble. Elastic stresses were found to dominate close to the bubble wall, whereas viscous stresses tended to persist farther into the surroundings. A non-dimensional parameter combining tissue, waveform and bubble properties was identified that dictates the dominant stress (viscous vs. elastic) as a function of distance from the bubble nucleus. In a cycle of bubble growth and collapse, characteristic times at which mechanical damage is likely to occur and dominant mechanisms acting at each time were identified.  相似文献   
7.
A novel histotripsy approach based on fundamental and second harmonic superposition and incorporating hundred-microsecond-long pulses and two-stage pulse protocol is proposed in this study to rapidly generate mechanically homogenized lesions. Two pulse stages were applied: stage 1, pulses with a pulse duration of 500–600 μs and pulse repetition frequency of 100 Hz, and stage 2, multiple periods, each composed of multiple pulses with the same pulse duration and pulse repetition frequency as those in stage 1, but with an off-time of 600 ms between periods. A custom-designed 1.1/2.2-MHz two-element confocal-annular array, with an f-number of 0.69, and lateral and axial full width at half-maximum pressure dimensions of approximately 1.0 and 6.0 mm, was used. The peak positive/negative pressures at the focus were +22/–7 MPa for 1.1 MHz and +56/–14 MPa with shock wave for 2.2 MHz. To investigate the feasibility of this approach, experiments were designed and performed in tissue-mimicking polyacrylamide gel phantoms with bovine serum albumin and in ex vivo porcine tissues. Cavitation and boiling activities were observed through high-speed photography, and the corresponding acoustic emissions were recorded through passive cavitation detection. Ex vivo experimental results revealed that complete tissue homogeneous regions with regular long tear shape and typical dimensions of 5.80 ± 0.19 mm in axial and 2.20 ± 0.26 mm in lateral were successfully generated in porcine kidney samples. The hematoxylin and eosin staining evidenced that the lesions were thoroughly homogenized and sharply demarcated from untreated regions. These results indicated that the histotripsy approach using fundamental and second harmonic superposition combined with hundred-microsecond pulses and two-stage pulse protocol can efficiently obtain a mechanical disruption of soft tissues with spatial precision, and this approach may have the potential to be developed as a useful tool for precise tumor treatment.  相似文献   
8.
Non-invasive histotripsy therapy has previously been used to achieve precise fetal tissue ablation in a sheep model. To further assess the clinical viability of the technique, this study investigated potential effects of histotripsy therapy during the remaining gestation and its local impact on fetal development. Five ewes (six lambs) at 95–107 d of gestation were treated and allowed to complete the full gestation period of 150 d. A 1-MHz focused transducer was used to treat the fetal kidney and liver with 5-μs pulses at 500-Hz repetition rates and 10- to 16-MPa peak negative pressures; ultrasound imaging provided real-time treatment guidance. The lambs were euthanized after delivery and treated organs were harvested. Samples were examined by magnetic resonance imaging and histopathologic analysis. These data were compared with results from four other ewes (four lambs) that underwent similar treatments but were sacrificed immediately after the procedure. The sheep tolerated the treatment well, and acute lesion samples displayed well-defined ablated regions characterized by the presence of fractionated tissue and hemorrhage. All fetuses that were allowed to continue gestation survived and were delivered at full term. The lambs were healthy on delivery, with no signs of external injury. A minor indentation was observed in each of the treated kidneys with minimal presence of fibrous tissue, while no discernible signs of lesions were detected in treated livers. In a sheep model, histotripsy-mediated fetal tissue ablation caused no acute or pregnancy-related complications, supporting the potential safety and effectiveness of histotripsy therapy as a tool in fetal intervention procedures.  相似文献   
9.
This in vitro study investigated the effects of ultrasound frequency and focal spacing on blood clot liquefaction via transcranial histotripsy. Histotripsy pulses were delivered using two 256-element hemispherical transducers of different frequency (250 and 500 kHz) with 30-cm aperture diameters. A 4-cm diameter spherical volume of in vitro blood clot was treated through 3 excised human skullcaps by electronically steering the focus with frequency proportional focal spacing: λ/2, 2 λ/3 and λ with 50 pulses per location. The pulse repetition frequency across the volume was 200 Hz, corresponding to a duty cycle of 0.08% (250 kHz) and 0.04% (500 kHz) for each focal location. Skull heating during treatment was monitored. Liquefied clot was drained via catheter and syringe in the range of 6–59 mL in 0.9–42.4 min. The fastest rate was 16.6 mL/min. The best parameter combination was λ spacing at 500 kHz, which produced large liquefaction through 3 skullcaps (23.1 ± 4.0, 37.1 ± 16.9 and 25.4 ± 16.9 mL) with the fast rates (3.2 ± 0.6, 5.1 ± 2.3 and 3.5 ± 0.4 mL/min). The temperature rise through the 3 skullcaps remained below 4°C.  相似文献   
10.
Free-flowing particles in a blood vessel were observed to be attracted, trapped and eroded by a histotripsy bubble cloud. This phenomenon may be used to develop a non-invasive embolus trap (NET) to prevent embolization. This study investigates the effect of acoustic parameters on the trapping ability of the NET generated by a focused 1.063 MHz transducer. The maximum trapping velocity, defined by the maximum mean fluid velocity at which a 3–4 mm particle trapped in a 6 mm diameter vessel phantom, increased linearly with peak negative pressure (P−) and increased as the square root of pulse length and pulse repetition frequency (PRF). At 19.9 MPa P−, 1000 Hz PRF and 10 cycle pulse length, a 3 mm clot-mimicking particle could remain trapped under a background velocity of 9.7 cm/s. Clot fragments treated by NET resulted in debris particles <75 μm. These results will guide the appropriate selection of NET parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号