首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Background Animal and human brain imaging studies suggest that the cerebellum plays an important role in the control of swallowing. In this study, we probed the interaction between cerebellar and pharyngeal motor cortical activity with transcranial magnetic stimulation (TMS) to determine if the cerebellum can modulate cortical swallowing motor circuitry. Methods Healthy volunteers (n = 16, eight men, mean age = 32, range 19–57 years) underwent TMS measurements of pharyngeal electromyography (EMG) recorded from a swallowed intraluminal catheter to assess cortical and cerebellar excitability. Subjects then underwent a paired pulse paradigm, where active or sham TMS conditioning pulses over the cerebellum and control sites were followed by suprathreshold TMS over the cortical pharyngeal area. Paired pulses were delivered at varying inter‐stimulus intervals (ISIs) with the cortical response amplitudes being assessed. Key Results Stimulation of the cerebellum over its midline or hemispheres evoked distinct pharyngeal EMG responses. There was no difference in EMG amplitudes following cerebellar hemispheric or midline stimulation (mean 55.5 ± 6.9 vs 42.8 ± 5.9 μV, P = 0.08). In contrast, after cerebellar preconditioning, the cortically evoked responses underwent maximal facilitation at ISIs of 50–200 ms (P < 0.05), an effect not seen with sham or trigeminal nerve preconditioning. Conclusions & Inferences Posterior fossa stimulation excites the cerebellum and evokes direct motor responses within the pharynx. When conditioned with TMS, the cerebellum strongly facilitates the cortical swallowing motor pathways. This finding suggests that the cerebellum exerts a modulatory effect on human swallowing and raises the possibility that excitatory neurostimulation of the cerebellum may be therapeutically useful in promoting recovery of dysphagia after neural damage.  相似文献   

2.
The purpose of this study was to investigate the effects of transcranial magnetic stimulation (TMS) over the cerebellum on the triphasic electromyographic (EMG) pattern. Eight healthy subjects extended the left wrist as fast as possible in response to a start cue. TMS was delivered over the cerebellum 50 ms after the start cue. TMS over the cerebellum produced shortening of the latency in the first agonist burst, and an increase in the EMG activity of the antagonist burst. The triphasic EMG pattern may be partially under the control of the cerebellum.  相似文献   

3.
Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of brain structures. This technique can be used either for stimulating the motor cortex, recording motor evoked potentials from peripheral muscles, or for modulating the excitability of other non-motor areas in order to establish their necessity for a given task. TMS of the cerebellum can give interesting insights on the cerebellar functions. Paired-TMS techniques, delivering stimuli over the cerebellum followed at various interstimulus intervals by stimuli over the motor cortex, allow studying the pattern of connectivity between the cerebellum and the contralateral motor cortex in physiological as well as in pathological conditions. Repetitive TMS, delivering trains of stimuli at different frequencies, allows interfering with the function of cerebellar circuits during the execution of cognitive tasks. This application complements neuropsychological and neuroimaging studies in the study of the cerebellar involvement in a number of cognitive operations, ranging from procedural memory, working memory and learning through observation.  相似文献   

4.
Previous evidence highlighted the multisensory‐motor origin of embodiment – that is, the experience of having a body and of being in control of it – and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo‐tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non‐invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non‐matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor‐evoked‐potentials, TMS‐evoked‐movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS‐induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non‐invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation.  相似文献   

5.
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.  相似文献   

6.
Repetition blindness (RB) was used to investigate whether illusory words emerge at a lexical-perceptual or a semantic-reconstructional level. Illusory words were evoked by the rapid serial visual presentation (RSVP) of two real words and a word fragment. The initial words share the same string of letters ("CREEP"-"SHEEP"), producing a free-floating word fragment ("SH"). This fragment is likely to be linked to a subsequently presented fragment ("IFT") if both combine to a meaningful word ("SHIFT"). The processing level of the illusions was probed by prime words preceding the RSVP sequence which were semantically related or unrelated to the second real word or to the illusion. Behavioural and electrophysiological correlates of the semantic priming effect were recorded in 14 subjects. Real words related to the prime were perceived more frequently, and evoked widespread N400-like effect in the event-related brain potentials (ERPs). An ERP effect of the same polarity was obtained for illusory words, however, its latency was delayed and the topographical distribution was restricted to left posterior electrode positions. These differences suggest that priming might affect real and illusory words at different levels of word processing: access to real words is facilitated at a semantic level, whereas lexical activation apparently accompanies the generation of illusory words.  相似文献   

7.
Illusory contours provide a striking example of the visual system's ability to extract a meaningful representation of the surroundings from fragmented visual stimuli. Psychophysical and neurophysiological data suggest that illusory contours are processed in early visual cortical areas, and neuroimaging studies in humans have shown that Kanizsa-type illusory contours activate early retinotopic visual areas that are also activated by real contours. It is not known whether other types of illusory contours are processed by the same mechanisms, nor is it clear to what extent attentional effects may have influenced these results, as no attempt was made to match the salience of real and illusory stimuli in previous imaging studies. It therefore remains an open question whether there are any brain regions specifically involved in the perception of illusory contours. To address these questions, we have used 15O-butanol positron emission tomography (PET) and a novel kind of illusory contour stimulus that is induced only by aligned line ends. By employing a form discrimination task that was matched for attention and stimulus salience across conditions we were able to directly contrast perception of real and illusory contours. We found that the regions activated by illusory contour perception were the same as those activated by real contours. Only one region, located in the right fusiform gyrus, was significantly more strongly activated by perception of illusory contours than by real contours. In addition, a principal component analysis suggested that illusory contour perception is associated with a change in the correlation between V1 and V2. We conclude that different kinds of illusory contours are processed by the same cortical regions and that these regions overlap extensively with those involved in processing of real contours. At the regional level, perception of illusory contours thus appears to differ from perception of real contours by the degree of involvement of higher visual areas as well as by the nature of interaction between early visual areas.  相似文献   

8.
A fundamental problem in form perception is how the visual system can link together spatially separated contour fragments to form the percept of a unitary shape. Illusory contours and amodal completion are two phenomena that demonstrate this linking process. In the present study we investigate these phenomena in the divided hemispheres of two callosotomy ("split-brain") patients. The data suggest that dissociable neural mechanisms are responsible for the generation of illusory contours and amodal completion. Although both cerebral hemispheres appear to be equally capable of perceiving illusory contours, amodal completion is more readily utilized by the right hemisphere. These results suggest that illusory contours may be attributable to low-level visual processes common to both hemispheres, whereas amodal completion reflects a higher-level, lateralized process.  相似文献   

9.
Autoscopic phenomena (AP) are rare, illusory visual experiences during which the subject has the impression of seeing a second own body in extrapersonal space. AP consist of out-of-body experience, autoscopic hallucination, and heautoscopy. Recent neurologic reports support the role of multisensory integration deficits of bodyrelated information and vestibular dysfunctions in AP at the temporo-parietal junction. A caveat to test the underlying neurologic and cognitive mechanisms of AP has been their rare and spontaneous occurrence. Recent evidence linked AP to mental own-body imagery engaging brain mechanisms at the temporo-parietal junction. These recent observations open a new avenue for testing AP-related cognitive mechanisms in selected clinical and normal populations. We review evidence on several clinical syndromes (psychosis, depression, anxiety, depersonalization, body dysmorphic disorder), suggesting that some of these syndromes may relate to AP-proneness, thereby leading to testable propositions for future research on body and self processing in addition to AP.  相似文献   

10.
Previous studies showed that transcranial magnetic stimulation (TMS) to the cerebellum evokes a long latency motor response in the soleus muscle during a postural task. The cerebellum is activated not only during postural tasks but also during motor tasks for which eye–hand coordination is required. The purpose of this study was to investigate whether TMS over the cerebellum evokes long latency motor responses in the hand during a visually guided manual tracking task. Eight healthy humans tracked an oscillatory moving target with the right index finger or pointed the finger at a stationary target, and TMS was delivered to the scalp over the cerebellum during the motor tasks. Trials with sham TMS were inserted between the trials with cerebellar TMS. The trajectory of finger movement fluctuated 92 ms after cerebellar TMS with a 24% probability during tracking of a moving target. The fluctuation was preceded by an electromyographic burst in the first dorsal interosseous muscle starting at 65 ms after TMS. The probability of fluctuation evoked by cerebellar TMS was significantly larger than that evoked by sham TMS during tracking of a moving target. This significant difference was absent in trials during which subjects pointed their index finger at a stationary target. These findings indicate that cerebellar TMS evokes a long latency motor response during a visually guided manual tracking task. The long latency motor response may be related to cerebellar activity associated with eye–hand coordination or to the detection of and correction for visuomotor errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号