首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
2.
Reddy DS  Apanites LA 《Brain research》2005,1033(1):96-101
Progesterone has sedative and anesthetic effects but the underlying molecular mechanisms remain unclear. The two possible mechanisms by which progesterone affects the function of the brain include binding to intracellular progesterone receptors (PR) and metabolism to GABA(A) receptor-modulating neurosteroids. In this study, PR knockout (PRKO) mice were used as model to study the role of PRs in the anesthetic activity of progesterone. The progesterone-induced anesthetic activity was undiminished in female PRKO mice (ED50, 172 mg/kg) as compared to their wild-type littermates (ED50, 167 mg/kg). The progesterone-induced anesthetic activity was highly correlated with increased plasma allopregnanolone levels. Pretreatment of PRKO mice with the 5alpha-reductase inhibitor finasteride significantly reduced the progesterone-induced anesthetic activity. Allopregnanolone also evoked dose-dependent anesthetic activity in PRKO mice, which was similar to those of wild-type mice. Thus, the anesthetic activity of progesterone is not mediated by its interaction with PRs. The neurosteroid allopregnanolone partially mediates the anesthetic activity of progesterone by potentiation of GABA(A) receptor function.  相似文献   

3.
Although much is known about the neural mechanisms responsible for the mnemonic effects of 17β‐estradiol (E2), very little is understood about the mechanisms through which progesterone (P4) regulates memory. We previously showed that intrahippocampal infusion of P4 in ovariectomized female mice enhances object recognition (OR) memory consolidation in a manner dependent on activation of dorsal hippocampal ERK and mTOR signaling. However, the role of specific progesterone receptors (PRs) in mediating the effects of progesterone on memory consolidation and hippocampal cell signaling are unknown. Therefore, the goals of this study were to investigate the roles of membrane‐associated and intracellular PRs in mediating hippocampal memory consolidation, and identify downstream cell signaling pathways activated by PRs. Membrane‐associated PRs were targeted using bovine serum albumin‐conjugated progesterone (BSA‐P), and intracellular PRs (PR‐A, PR‐B) were targeted using the intracellular PR agonist R5020. Immediately after OR training, ovariectomized mice received bilateral dorsal hippocampal infusion of vehicle, P4, BSA‐P, or R5020. OR memory consolidation was enhanced by P4, BSA‐P, and R5020. However, only P4 and BSA‐P activated ERK and mTOR signaling. Furthermore, dorsal hippocampal infusion of the ERK inhibitor U0126 blocked the memory‐enhancing effects of BSA‐P, but not R5020. The intracellular PR antagonist RU486 blocked the memory‐enhancing effects of R5020, but not BSA‐P. Interestingly, P4 robustly activated canonical Wnt signaling in the dorsal hippocampus, which is consistent with our recent findings that canonical Wnt signaling is necessary for OR memory consolidation. R5020, but not BSA‐P, also elicited a modest increase in canonical Wnt signaling. Collectively, these data suggest that activation of ERK signaling is necessary for membrane‐associated PRs to enhance OR, and indicate a role for canonical Wnt signaling in the memory‐enhancing effects of intracellular PRs. This study provides the first evidence that membrane and intracellular PRs may employ different molecular mechanisms to enhance hippocampal memory. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Progesterone has neuroprotective effects in the injured and diseased spinal cord and after traumatic brain injury (TBI). In addition to intracellular progesterone receptors (PR), membrane-binding sites of progesterone may be involved in neuroprotection. A first putative membrane receptor of progesterone, distinct from the classical intracellular PR isoforms, with a single membrane-spanning domain, has been cloned from porcine liver. Homologous proteins were cloned in rats (25-Dx), mice (PGRMC1) and humans (Hpr.6). We will refer to this progesterone-binding protein as 25-Dx. The distribution and regulation of 25-Dx in the nervous system may provide some clues to its functions. In spinal cord, 25-Dx is localized in cell membranes of dorsal horn neurons and ependymal cells lining the central canal. A role of 25-Dx in mediating the protective effects of progesterone in the spinal cord is supported by the observation that its mRNA and protein are up-regulated by progesterone in dorsal horn of the injured spinal cord. In contrast, the classical intracellular PRs were down-regulated under these conditions. In brain, 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, ependymal cells of the ventricular walls, and the meninges. Interestingly, it is co-expressed with vasopressin in neurons of the paraventricular, supraoptic and retrochiasmatic nuclei. In response to TBI, 25-Dx expression is up-regulated in neurons and induced in astrocytes. The expression of 25-Dx in structures involved in cerebrospinal fluid production and osmoregulation, and its up-regulation after brain damage, point to a potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after TBI. Our observations suggest that progesterone's actions may involve different signaling mechanisms depending on the pathophysiological context, and that 25-Dx may be involved in the neuroprotective effect of progesterone in the injured brain and spinal cord.  相似文献   

5.
In addition to its well documented action in female-typical behaviors, progesterone exerts an influence on the brain and behavior of males. This review will discuss the role of progesterone and its receptor in male-typical reproductive behaviors in adulthood and the role of progesterone and its receptor in neural development, in both sexual differentiation of the brain as well as in the development of "non-reproductive" functions. The seemingly inconsistent and contradictory results on progesterone in males that exist in the literature illustrate the complexity of progesterone's actions and illuminate the need for further research in this area. As progestin-containing contraceptives in men are currently being tested and progesterone administration to pregnant women and premature newborns increases, a better understanding of the role of this hormone in behavior and brain development becomes essential.  相似文献   

6.
7.
Estrogen and progesterone may modulate serotonergic function through intracellular receptors, alpha (ER alpha) and/or beta (ER beta), and the progestin receptor (PR). Studies in macaque and rat suggest species differences in steroid action. Presently, we examined the mouse. To identify whether ER alpha is involved in estrogen induction of PR in midbrain raphe, we studied the ER alpha gene-disrupted (alpha ERKO) mouse. The hippocampus was examined as another estrogen/progestin-sensitive brain area reported to express ER alpha, ER beta, and PR. Female and male homozygous alpha ERKO and wildtype mice were gonadectomized and given estradiol benzoate or vehicle. Dual-label immunocytochemistry was performed for PR or ER alpha and the serotonin-synthesizing enzyme, tryptophan hydroxylase (TPH). Cells exhibiting PR immunoreactivity (PR-ir) or ER alpha-ir were observed in dorsal and median raphe and hippocampus in both sexes. No ER alpha-ir cells were observed in alpha ERKO brains. In raphe, PR-ir or ER alpha-ir often colocalized with TPH-ir. Thus, estrogen and progesterone may directly modulate gene expression in select serotonergic neurons via ER alpha and PR in female and male mice. Estrogen significantly increased the number of PR-ir cells, and the percentage of PR-ir cells colocalizing TPH-ir in both raphe nuclei, regardless of sex and genotype. Although less among alpha ERKO mice, the significant estrogen induction of PRs implicates the involvement of another ER, perhaps ER beta. In hippocampus, distinct estrogen-induced PR-ir cells were observed only in wildtype animals, demonstrating an ER alpha-mediated event in this forebrain region. Collectively, these findings suggest that estrogen can regulate the expression of one gene (the PR) via multiple mechanisms, based upon brain region.  相似文献   

8.
The endocannabinoid system exerts an important neuromodulatory function in different brain areas and is also known to be involved in the regulation of neural cell fate. Thus, CB(1) cannabinoid receptors are neuroprotective in different models of brain injury, and their expression is altered in various neurodegenerative diseases. Recent findings have demonstrated the presence of a functional endocannabinoid system in neural progenitor cells that participates in the regulation of cell proliferation and differentiation. In this Research Update, the authors address the experimental evidence regarding the regulatory role of cannabinoids in neurogenesis and analyze them in the context of those pathological disorders in which cannabinoid function and altered neuronal or glial generation is most relevant, for example, stroke and multiple sclerosis.  相似文献   

9.
Studies in avian species have often been useful in elucidating basic concepts relevant to the regulation of reproductive behaviors by sex steroid hormones. Once a link between a steroid hormone and a behavioral response has been established, one can use the localization of steroid hormone receptors in the brain to facilitate the identification of neural circuits that control behavior. The recent identification of a second type of estrogen receptor called estrogen receptor beta or ERbeta has raised new issues about the action of steroid hormones in the brain. A hypothesis has been proposed by Kuiper et al. [1998] based on studies in mammalian species suggesting that ERalpha (the name given to the ER that was previously described) is important for reproduction while ERbeta is more important for non-reproductive functions. In this paper we apply this hypothesis more generally by examining possible functions of ERbeta in avian species. We have initiated studies of the ERbeta in the brain of two avian species, the Japanese quail (Coturnix japonica) and the European starling (Sturnus vulgaris). ERbeta was cloned in both species and the mRNA for this receptor type was localized in the brain employing in situ hybridization histochemistry methods. In both species ERbeta was found to be diffusely present in telencephalic areas consistent with a role for this receptor subtype in cognitive functions. However, ERbeta mRNA was also found in many brain areas that are traditionally thought to be important in the regulation of reproductive functions such as the preoptic region, the bed nucleus of the stria terminalis and the nucleus taeniae. Of the two receptor types, only mRNA for ERalpha was observed in the telencephalic vocal control nucleus HVc of male starlings. Steroid receptors in this nucleus are thought to be an example of an evolutionary specialization that has evolved to coordinate the production of courtship vocalizations with other aspects of reproduction. The lack of ERbeta mRNA expression in HVc is consistent with the hypothesis that ERalpha is preferentially involved in reproductive behaviors while ERbeta is involved in the steroid regulation of other neural functions. However, the widespread occurrence of ERbeta in other nuclei involved in reproductive function suggests that one must be cautious about the general applicability of the above hypothesis until more is known about ERbeta function in these other nuclei.  相似文献   

10.
Over the past decade, it has become clear that the brain is a steroidogenic organ. The steroids synthesized by the brain and nervous system, given the name neurosteroids, have a wide variety of diverse functions. In general, they mediate their actions, not through classic steroid hormone nuclear receptors, but through ion-gated neurotransmitter receptors. This paper summarizes what is known about the biosynthesis of neurosteroids, the enzymes mediating these reactions, their localization during development and in the adult, and their function and mechanisms of action in the developing and adult central and peripheral nervous systems. The expression of the steroidogenic enzymes is developmentally regulated, with some enzymes being expressed only during development, while others are expressed during development and in the adult. These enzymes are expressed in both neurons and glia, suggesting that these two cell types must work in concert to produce the appropriate active neurosteroid. The functions attributed to specific neurosteroids include modulation of GABA(A) and NMDA function, modulation of sigma receptor function, regulation of myelinization, neuroprotection, and growth of axons and dendrites. Neurosteroids have also been shown to modulate expression of particular subunits of GABA(A) and NMDA receptors, providing additional sites at which these compounds can regulate neural function. The pharmacological properties of specific neurosteroids are described, and potential uses of neurosteroids in specific neuropathologies and during normal aging in humans are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号