首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Although the neurotoxic actions of aluminium (Al) have been well documented, its contribution to neurodegenerative diseases such as Alzheimer's disease remains controversial. In the present study, we applied histochemical techniques to identify changes induced by intracerebroventricular Al injections (5.4 microg in 5.5 microl, daily over a period of 5 successive days) in the adult rat brain after survival periods of either 1 or 6 weeks. For both Al- and saline-infused controls, no major signs of gross histological changes were evident in cresyl violet-stained sections. Al (as indicated by the fluorescent Morin staining) was concentrated in white matter of the medial striatum, corpus callosum, and cingulate bundle. Immunoreactivity of astrocytes and phagocytic microglia based on glial fibrillary acidic protein and ED1 markers, respectively, revealed a greater inflammatory response in Al-injected animals compared to controls. Damage of the cingulate bundle in Al-treated animals led to a severe anterograde degeneration of cholinergic terminals in cortex and hippocampus, as indicated by acetylcholinesterase labelling. Our data suggest that the enhancement of inflammation and the interference with cholinergic projections may be the modes of action through which Al may cause learning and memory deficits, and contribute to pathological processes in Alzheimer's disease.  相似文献   

2.
We investigated the effect of ovariectomy (OVX) and hormonal treatment for 10 weeks by estradiol and progesterone on muscarinic M4 receptor subtype in different brain areas of female rats. Moreover, motor activity of OVX and hormone-treated rats was measured by automated open field exploration boxes. Receptor quantification in the hippocampus, frontal cortex, parietal cortex, amygdala and hypothalamus was done by receptor autoradiography using a selective ligand for muscarinic M4 receptors. Ovariectomy up-regulated M4 receptors in the dentate gyrus, CA1, CA3, frontal cortex and hypothalamus whereas the estrogen treatment restored M4 binding to that of the sham group. Progesterone treatment had no effect on the ovariectomy-induced up-regulation of M4 receptors. Ovariectomy significantly decreased the exploratory activity of the rats compared to the sham group. Estrogen treatment restored the exploratory behavior of the ovariectomized rats to that of the sham group whereas the progesterone-treated rats were less alert to the surrounding when compared to the sham and estrogen supplemented rats. The effect of estrogen on the hippocampal muscarinic M4 receptor subtype is a novel finding and may have functional significance for cholinergic receptors especially in relation to postmenopausal memory problems and neurodegenerative disease like Alzheimer’s disease.  相似文献   

3.
Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia.  相似文献   

4.
5.
Until the last decade, little attention was given by the neuroscience community to the neurometabolism of metals. However, the neurobiology of heavy metals is now receiving growing interest, since it has been linked to major neurodegenerative diseases. In the present review some metals that could possibly be involved in neurodegeneration are discussed. Two of them, manganese and zinc, are essential metals while aluminum is non-essential. Aluminum has long been known as a neurotoxic agent. It is an etiopathogenic factor in diseases related to long-term dialysis treatment, and it has been controversially invoked as an aggravating factor or cofactor in Alzheimer's disease as well as in other neurodegenerative diseases. Manganese exposure can play an important role in causing Parkinsonian disturbances, possibly enhancing physiological aging of the brain in conjunction with genetic predisposition. An increased environmental burden of manganese may have deleterious effects on more sensitive subgroups of the population, with sub-threshold neurodegeneration in the basal ganglia, generating a pre-Parkinsonian condition. In the case of zinc, there has as yet been no evidence that it is involved in the etiology of neurodegenerative diseases in humans. Zinc is redox-inactive and, as a result of efficient homeostatic control, does not accumulate in excess. However, adverse symptoms in humans are observed on inhalation of zinc fumes, or accidental ingestion of unusually large amounts of zinc. Also, high concentrations of zinc have been found to kill bacteria, viruses, and cultured cells. Some of the possible mechanisms for cell death are reviewed.  相似文献   

6.
7.
Mattson MP 《Brain research》2000,886(1-2):47-53
It is remarkable that neurons are able to survive and function for a century or more in many persons that age successfully. A better understanding of the molecular signaling mechanisms that permit such cell survival and synaptic plasticity may therefore lead to the development of new preventative and therapeutic strategies for age-related neurodegenerative disorders. We all know that overeating and lack of exercise are risk factors for many different age-related diseases including cardiovascular disease, diabetes and cancers. Our recent studies have shown that dietary restriction (reduced calorie intake) can increase the resistance of neurons in the brain to dysfunction and death in experimental models of Alzheimer's disease, Parkinson's disease, Huntington's disease and stroke. The mechanism underlying the beneficial effects of dietary restriction involves stimulation of the expression of 'stress proteins' and neurotrophic factors. The neurotrophic factors induced by dietary restriction may protect neurons by inducing the production of proteins that suppress oxyradical production, stabilize cellular calcium homeostasis and inhibit apoptotic biochemical cascades. Interestingly, dietary restriction also increases numbers of newly-generated neural cells in the adult brain suggesting that this dietary manipulation can increase the brain's capacity for plasticity and self-repair. Work in other laboratories suggests that physical and intellectual activity can similarly increase neurotrophic factor production and neurogenesis. Collectively, the available data suggest the that dietary restriction, and physical and mental activity, may reduce both the incidence and severity of neurodegenerative disorders in humans. A better understanding of the cellular and molecular mechanisms underlying these effects of diet and behavior on the brain is also leading to novel therapeutic agents that mimick the beneficial effects of dietary restriction and exercise.  相似文献   

8.
Mateo I, Infante J, Sánchez‐Juan P, García‐Gorostiaga I, Rodríguez‐Rodríguez E, Vázquez‐Higuera JL, Berciano J, Combarros O. Serum heme oxygenase‐1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease.
Acta Neurol Scand: 2010: 121: 136–138.
© 2009 The Authors Journal compilation © 2009 Blackwell Munksgaard. Objective – Oxidative stress is implicated in Parkinson’s disease (PD) and Alzheimer’s disease (AD), and heme oxygenase‐1 (HO‐1) is a potent antioxidant overexpressed in PD substantia nigra and AD cerebral cortex and hippocampus, indicating a possible up‐regulation of antioxidant defenses in both neurodegenerative diseases. The role of HO‐1 in peripheral blood of PD and AD patients remains unresolved. Methods – We measured serum HO‐1 levels in 107 patients with PD, 105 patients with AD, 104 controls for PD and 120 controls for AD. Results – The median serum concentration of HO‐1 was significantly higher in PD patients (2.04 ng/ml) compared with that of PD controls (1.69 ng/ml, P = 0.016), with PD patients predominating over controls in the upper tertile of serum HO‐1 levels, whereas there was more PD controls than PD patients in the lower tertile (P = 0.006). Median serum levels of HO‐1 did not differ significantly between AD patients and AD controls. Conclusion – The increase of serum HO‐1 levels in PD patients could indicate a systemic antioxidant reaction related to a chronic oxidative stress state in PD brain.  相似文献   

9.
Objectives – A highly adaptive aspect of human memory is the enhancement of explicit, consciously accessible memory by emotional stimuli. We studied the performance of Alzheimer’s disease (AD) patients and elderly controls using a memory battery with emotional content, and we correlated these results with the amygdala and hippocampus volume. Methods – Twenty controls and 20 early AD patients were subjected to the International Affective Picture System (IAPS) and to magnetic resonance imaging‐based volumetric measurements of the medial temporal lobe structures. Results – The results show that excluding control group subjects with 5 or more years of schooling, both groups showed improvement with pleasant or unpleasant figures for the IAPS in an immediate free recall test. Likewise, in a delayed free recall test, both the controls and the AD group showed improvement for pleasant pictures, when education factor was not controlled. The AD group showed improvement in the immediate and delayed free recall test proportional to the medial temporal lobe structures, with no significant clinical correlation between affective valence and amygdala volume. Conclusion – AD patients can correctly identify emotions, at least at this early stage, but this does not improve their memory performance.  相似文献   

10.
We examine the role of visual feedback in the programming and execution of reaching movement in patients with Parkinson’s disease without cognitive impairment and patients with Alzheimer’s disease without extrapyramidal signs. Controls were normally aging subjects. All subjects moved a cursor to targets on a digitizing tablet without seeing their limb. Starting and target positions were always visible on a screen while, during movement, cursor position was either visible or blanked. They were instructed to make uncorrected movements, as fast and as accurate as possible without minimizing reaction time. In absence of visual feedback, movement accuracy in patients with AD was severely impaired. Hand paths of parkinsonian patients were as accurate as normal subjects’ with similar temporal velocity profiles and movement speed. With cursor feedback, accuracy was the same in the three groups, although movement speed and transport phase in patients with Alzheimer’s disease were significantly reduced compared to the other groups. Also, movements of parkinsonian patients showed shorter transport phase and lower mean velocity than controls’. The different characteristics of the motor performance suggests that in the two diseases visual information is used differently for both motor programming and execution: patients with Alzheimer’s disease, while scarcely using feed forward commands, relied on continuous on-line external cues. The correlation of motor performance with cognitive impairment argues against the hypothesis of basal ganglia involvement in AD. The motor abnormalities we found may represent early subclinical manifestation of apraxic disturbance. Parkinsonian patients showed higher reliance on feedback commands only with cursor feedback: this could be explained by their difficulty in engaging effectively automatic routines when distractors are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号