首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The brain interprets experiences and translates them into behavioral and physiological responses. Stressful events are those which are threatening or, at the very least, unexpected and surprising, and the physiological and behavioral responses are intended to promote adaptation via a process called "allostasis. " Chemical mediators of allostasis include cortisol and adrenalin from the adrenal glands, other hormones, and neurotransmitters, the parasympathetic and sympathetic nervous systems, and cytokines and chemokines from the immune system. Two brain structures, the amygdala and hippocampus, play key roles in interpreting what is stressful and determining appropriate responses. The hippocampus, a key structure for memories of events and contexts, expresses receptors that enable it to respond to glucocorticoid hormones in the blood, it undergoes atrophy in a number of psychiatric disorders; it also responds to stressors with changes in excitability, decreased dendritic branching, and reduction in number of neurons in the dentate gyrus. The amygdala, which is important for "emotional memories, " becomes hyperactive in posttraumatic stress disorder and depressive illness, in animal models of stress, there is evidence for growth and hypertrophy of nerve cells in the amygdala. Changes in the brain after acute and chronic stressors mirror the pattern seen in the metabolic, cardiovascular, and immune systems, that is, short-term adaptation (allostasis) followed by long-term damage (allostatic load), eg, atherosclerosis, fat deposition obesity, bone demineralization, and impaired immune function. Allostatic load of this kind is seen in major depressive illness and may also be expressed in other chronic anxiety and mood disorders.  相似文献   

2.
The hippocampus is a malleable brain region that responds to external agents such as hormones and stressors. Investigations that began in our laboratories with the Golgi technique and an appreciation of hippocampal neuroanatomy at the light and electron microscopic levels have led us down a path that has uncovered unexpected structural plasticity in the adult brain along with unanticipated cellular and molecular mechanisms of this plasticity and of hormone mediation of these effects. This chapter reviews the history of discoveries in our two laboratories involving the actions of estradiol and stress hormones on neuronal structure and function and then discusses the insight to hormone-brain interactions that this has engendered. These discoveries have led us to a new view of brain structural plasticity and the role and mechanism of steroid hormone action involving both genomic and non-genomic pathways. This new view is consistent with the predictions of Cajal in his book "The Structure of Ammon's horn", 1892.  相似文献   

3.
Mood disorders and allostatic load.   总被引:16,自引:0,他引:16  
The brain controls both the physiologic and the behavioral coping responses to daily events as well as major stressors, and the nervous system is itself a target of the mediators of those responses through circulating hormones. The amygdala and hippocampus interpret what is stressful and regulate appropriate responses. The amygdala becomes hyperactive in posttraumatic stress disorder (PTSD) and depressive illness, and hypertrophy of amygdala nerve cells is reported after repeated stress in an animal model. The hippocampus expresses adrenal steroid receptors. It undergoes atrophy in several psychiatric disorders and responds to repeated stressors with decreased dendritic branching and reduction in number of neurons in the dentate gyrus. Stress promotes adaptation ("allostasis"), but a perturbed diurnal rhythm or failed shutoff of mediators after stress ("allostatic state") leads, over time, to wear and tear on the body ("allostatic load"). Neural changes mirror the pattern seen in the cardiovascular, metabolic, and immune systems, that is, short-term adaptation versus long-term damage. Allostatic load leads to impaired immunity, atherosclerosis, obesity, bone demineralization, and atrophy of nerve cells in brain. Allostatic load is seen in major depressive illness and may also be expressed in other chronic anxiety disorders such as PTSD and should be documented.  相似文献   

4.
Stress as a risk factor in the pathogenesis of rheumatoid arthritis   总被引:1,自引:0,他引:1  
Stress is now recognized as an important risk factor in the pathogenesis of autoimmune rheumatic diseases (i.e. rheumatoid arthritis) by considering that the activation of the stress response system influences the close relationships existing between the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system and the immune system. The stress response results in the release of neurotransmitters (norepinephrine), hormones (cortisol) and immune cells which serve to send an efferent message from the brain to the periphery. Major life events lead to an intense release of stress mediators (large time integral of released neurotransmitters and hormones), whereas in minor life events, only short-lived surges of neurotransmitters and hormones are expected. Therefore, it is suggested that neurotransmitters such as norepinephrine or stress hormones such as cortisol might have different effects on immune/inflammatory responses at high and low concentrations present during short or extended periods of time, respectively. Long-lasting (chronic) stress may lead to proinflammatory effects because no adequate long-term responses of stress axes (anti-inflammatory) are to be expected.  相似文献   

5.
6.
Recent findings in epigenetics shed new light on the regulation of gene expression in the central nervous system (CNS) during stress. The most frequently studied epigenetic mechanisms are DNA methylation, histone modifications and microRNA activity. These mechanisms stably determine cell phenotype but can also be responsible for dynamic molecular adaptations of the CNS to stressors. The limbic–hypothalamic–pituitary–adrenal axis (LHPA) is the primary circuit that initiates, regulates and terminates a stress response. The same brain areas that control stress also react to stress dynamically and with long-term consequences. One of the biological processes evoking potent adaptive changes in the CNS such as changes in behavior, gene activity or synaptic plasticity in the hippocampus is psychogenic stress. This review summarizes the current data regarding the epigenetic basis of molecular adaptations in the brain including genome-wide epigenetic changes of DNA methylation and particular genes involved in epigenetic responses that participate in the brain response to chronic psychogenic stressors. It is concluded that specific epigenetic mechanisms in the CNS are involved in the stress response.  相似文献   

7.
8.
The term "allostasis" has been coined to clarify ambiguities associated with the word "stress". Allostasis refers to the adaptive processes that maintain homeostasis through the production of mediators such as adrenalin, cortisol and other chemical messengers. These mediators of the stress response promote adaptation in the aftermath of acute stress, but they also contribute to allostatic overload, the wear and tear on the body and brain that result from being "stressed out". This conceptual framework has created a need to know how to improve the efficiency of the adaptive response to stressors while minimizing overactivity of the same systems, since such overactivity results in many of the common diseases of modern life. This framework has also helped to demystify the biology of stress by emphasizing the protective as well as the damaging effects of the body's attempts to cope with the challenges known as stressors.  相似文献   

9.
Over the past two decades it became evident that the immune system plays a central role in modulating learning, memory and neural plasticity. Under normal quiescent conditions, immune mechanisms are activated by environmental/psychological stimuli and positively regulate the remodeling of neural circuits, promoting memory consolidation, hippocampal long-term potentiation (LTP) and neurogenesis. These beneficial effects of the immune system are mediated by complex interactions among brain cells with immune functions (particularly microglia and astrocytes), peripheral immune cells (particularly T cells and macrophages), neurons, and neural precursor cells. These interactions involve the responsiveness of non-neuronal cells to classical neurotransmitters (e.g., glutamate and monoamines) and hormones (e.g., glucocorticoids), as well as the secretion and responsiveness of neurons and glia to low levels of inflammatory cytokines, such as interleukin (IL)-1, IL-6, and TNFα, as well as other mediators, such as prostaglandins and neurotrophins. In conditions under which the immune system is strongly activated by infection or injury, as well as by severe or chronic stressful conditions, glia and other brain immune cells change their morphology and functioning and secrete high levels of pro-inflammatory cytokines and prostaglandins. The production of these inflammatory mediators disrupts the delicate balance needed for the neurophysiological actions of immune processes and produces direct detrimental effects on memory, neural plasticity and neurogenesis. These effects are mediated by inflammation-induced neuronal hyper-excitability and adrenocortical stimulation, followed by reduced production of neurotrophins and other plasticity-related molecules, facilitating many forms of neuropathology associated with normal aging as well as neurodegenerative and neuropsychiatric diseases.  相似文献   

10.
Chronic stress and neural function: accounting for sex and age   总被引:3,自引:1,他引:2  
Cognitive responses to stress follow the temporally dependent pattern originally established by Selye (1) wherein short-term stressors elicit adaptive responses whereas continued stress (chronic) results in maladaptive changes--deleterious effects on physiological systems and impaired cognition. However, this pattern for cognitive effects appears to apply to only half the population (males) and, more specifically, to young, adult males. Females show different cognitive responses to stress. In contrast to impaired cognition in males after chronic stress, female rodents show enhanced performance on the same memory tasks after the same stress. Not only cognition, but anxiety, shows sex-dependent changes following chronic stress--stress is anxiolytic in males and anxiogenic in females. Moreover, behavioral responses to chronic stress are different in developing as well as aging subjects (both sexes) as compared to adults. In aged rats, chronic stress enhances recognition memory in both sexes, does not alter spatial memory, and anxiety effects are opposite to young adults. When pregnant dams are exposed to chronic stress, at adulthood the offspring display yet different consequences of stress on anxiety and cognition, and, in contrast to adulthood when the behavioral effects of stress are reversible, prenatal stress effects appear enduring. Changing levels of estradiol in the sexes over the lifespan appear to contribute to the differences in response to stress. Thus, theories of stress dependent modulations in CNS function--developed solely in male models, focused on peripheral physiological processes and tested in adults--may require revision when applied to a more diverse population (age- and sex-wise) at least in relation to the neural functions of cognition and anxiety. Moreover, these results suggest that other stressors and neural functions should be investigated to determine whether age, sex and gonadal hormones also have an impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号