首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.  相似文献   

2.
Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention,memory,and the speed of information processing.The hippocampus,which is a brain important structure involved in memory,undergoes microstructural changes in the early stage of multiple sclerosis.In this study,we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain,changes in local brain function and microstructure,and cognitive function at rest.We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University,China,from April 2015 to November 2019.Sixteen healthy volunteers were recruited as the healthy control group.All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging.Compared with the healthy control group,the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus.Hippocampal diffusion tensor imaging data showed that,compared with the healthy control group,patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values,suggesting abnormal hippocampal structure.The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score(r=-0.698,P=0.025),and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score(r=-0.649,P=0.042).The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score(r=-0.729,P=0.017)and positively correlated with the extended disability status scale score(r=0.653,P=0.041).The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score(r=0.684,P=0.029).These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability.This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University,China(approval No.201702202)on February 22,2017.  相似文献   

3.
Cattle encephalon glycoside and ignotin(CEGI)injection is a compound preparation formed by a combination of muscle extract from hea lthy rabbits and brain gangliosides from cattle,and it is generally used as a neuroprotectant in the treatment of central and peripheral nerve injuries.However,there is still a need for high-level clinical evidence from large samples to support the use of CEGI.We therefore carried out a prospective,multicenter,randomized,double-blind,parallel-group,placebo-controlled study in which we recruited 319 patients with acute cerebral infarction from 16 centers in China from October 2013 to May 2016.The patients were randomized at a 3:1 ratio into CEGI(n=239;155 male,84 female;61.2±9.2 years old)and placebo(n=80;46 male,34 female;63.2±8.28 years old)groups.All patients were given standard care once daily for 14 days,including a 200 mg aspirin enteric-coated tablet and 20 mg atorvastatin calcium,both taken orally,and intravenous infusion of 250–500 mL 0.9%sodium chloride containing 40 mg sodium tanshinone IIA sulfonate.Based on conventional treatment,patients in the CEGI and placebo groups were given 12 mL CEGI or 12 mL sterile water,respectively,in an intravenous drip of 250 mL 0.9%sodium chloride(2 mL/min)once daily for 14 days.According to baseline National Institutes of Health Stroke Scale scores,patients in the two groups were divided into mild and moderate subgroups.Based on the modified Rankin Scale results,the rate of patients with good outcomes in the CEGI group was higher than that in the placebo group,and the rate of disability in the CEGI group was lower than that in the placebo group on day 90 after treatment.In the CEGI group,neurological deficits were decreased on days 14 and 90 after treatment,as measured by the National Institutes of Health Stroke Scale and the Barthel Index.Subgroup analysis revealed that CEGI led to more significant improvements in moderate stroke patients.No drug-related adverse events occurred in the CEGI or placebo groups.In conclusion,CEGI may be a safe and effective treatment for acute cerebral infarction patients,especially for moderate stroke patients.This study was approved by the Ethical Committee of Peking University Third Hospital,China(approval No.2013-068-2)on May 20,2013,and registered in the Chinese Clinical Trial Registry(registration No.ChiCTR1800017937).  相似文献   

4.
Diabetes mellitus is an independent risk factor for ischemic stroke.Both diabetes mellitus and stroke are linked to systemic inflammation that aggravates patient outcomes.Stellate ganglion block can effectively regulate the inflammatory response.Therefore,it is hypothesized that stellate ganglion block could be a potential therapy for ischemic stroke in diabetic subjects.In this study,we induced diabetes mellitus in rats by feeding them a high-fat diet for 4 successive weeks.The left middle cerebral artery was occluded to establish models of ischemic stroke in diabetic rats.Subsequently,we performed left stellate ganglion block with 1%lidocaine using the percutaneous posterior approach 15 minutes before reperfusion and again 20 and 44 hours after reperfusion.Our results showed that stellate ganglion block did not decrease the blood glucose level in diabetic rats with diabetes mellitus but did reduce the cerebral infarct volume and the cerebral water content.It also improved the recovery of neurological function,increased 28-day survival rate,inhibited Toll like receptor 4/nuclear factor kappa B signaling pathway and reduced inflammatory response in the plasma of rats.However,injection of Toll like receptor 4 agonist lipopolysaccharide 5 minutes before stellate ganglion block inhibited the effect of stellate ganglion block,whereas injection of Toll like receptor 4 inhibitor TAK242 had no such effect.We also found that stellate ganglion block performed at night had no positive effect on diabetic ischemic stroke.These findings suggest that stellate ganglion block is a potential therapy for diabetic ischemic stroke and that it may be mediated through the Toll like receptor 4/nuclear factor kappa B signaling pathway.We also found that the therapeutic effect of stellate ganglion block is affected by circadian rhythm.  相似文献   

5.
Repetitive transcranial magnetic stimulation(r TMS)has been shown to effectively improve impaired swallowing in Parkinson's disease(PD)patients with dysphagia.However,little is known about how r TMS affects the corresponding brain regions in this patient group.In this casecontrol study,we examined data from 38 PD patients with dysphagia who received treatment at Beijing Rehabilitation Medicine Academy,Capital Medical University.The patients received high-frequency r TMS of the motor cortex once per day for 10 successive days.Changes in brain activation were compared via functional magnetic resonance imaging in PD patients with dysphagia and healthy controls.The results revealed that before treatment,PD patients with dysphagia showed greater activation in the precentral gyrus,supplementary motor area,and cerebellum compared with healthy controls,and this enhanced activation was weakened after treatment.Furthermore,before treatment,PD patients with dysphagia exhibited decreased activation in the parahippocampal gyrus,caudate nucleus,and left thalamus compared with healthy controls,and this activation increased after treatment.In addition,PD patients with dysphagia reported improved subjective swallowing sensations after r TMS.These findings suggest that swallowing function in PD patients with dysphagia improved after r TMS of the motor cortex.This may have been due to enhanced activation of the caudate nucleus and parahippocampal gyrus.The study protocol was approved by the Ethics Committee of Beijing Rehabilitation Hospital of Capital Medical University(approval No.2018 bkky017)on March 6,2018 and was registered with Chinese Clinical Trial Registry(registration No.Chi CTR 1800017207)on July 18,2018.  相似文献   

6.
Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination.Focal demyelination is associated with relapsing-remitting multiple sclerosis,while progressive forms of the disease show axonal degeneration and neuronal loss.The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity.MicroRNAs(miRNAs)are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases.A review of recent studies with the experimental autoimmune encephalomyelitis animal model(mostly female mice 6–12 weeks of age)has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset(asymptomatic)stage when assessed in blood plasma and urine exosomes,and spinal cord tissue.The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes,brain and spinal cord tissue,and at the post-peak(chronic)stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue.Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease.Interestingly,experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a,miR-23b,miR-497,miR-26a,and miR-20b,or by suppression of miR-182,miR-181c,miR-223,miR-155,and miR-873.Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course.Additionally,studies should be performed with male mice of a similar age,and with aged male and female mice.  相似文献   

7.
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage.Secondary damage presents the greatest challenge for medical staff;however,there are currently few effective therapeutic targets for secondary damage.Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system.Homer signaling can exert either positive or negative effects during such insults,depending on the specific subtype of Homer protein.Homer 1b/c couples with other proteins to form postsynaptic densities,which form the basis of synaptic transmission,while Homer 1a expression can be induced by harmful external factors.Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells,mediated or affected by extracellular or intracellular signaling or cytoskeletal processes.This review summarizes the structural features,related signaling pathways,and diverse roles of Homer proteins in physiological and pathological processes.Upregulating Homer 1a or downregulating Homer 1b/c may play a neuroprotective role in secondary brain injuries.Homer also plays an important role in the formation of photoreceptor synapses.These findings confirm the neuroprotective effects of Homer,and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.  相似文献   

8.
9.
We previously combined reduced graphene oxide(rGO) with gelatin-methacryloyl(GelMA) and polycaprolactone(PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs) can be loaded ...  相似文献   

10.
Retinal degenerative diseases affecting the outer retina in its many forms(inherited,acquired or induced)are characterized by photoreceptor loss,and represent currently a leading cause of irreversible vision loss in the world.At present,there are very few treatments capable of preventing,recovering or reversing photoreceptor degeneration or the secondary retinal remodeling,which follows photoreceptor loss and can also cause the death of other retinal cells.Thus,these diseases are nowadays one of the greatest challenges in the field of ophthalmological research.Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations.These cells may have the potential to slow down photoreceptor loss,and therefore should be applied in the early stages of photoreceptor degenerations.Furthermore,because of their possible paracrine effects,they may have a wide range of clinical applications,since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells.The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors.Therefore,it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.  相似文献   

11.
The formation of nerve bundles,which is partially regulated by neural cell adhesion molecule 1(NCAM1),is important for neural network organization during peripheral nerve regeneration.However,little is known about how the extracellular matrix(ECM)microenvironment affects this process.Here,we seeded dorsal root ganglion tissue blocks on different ECM substrates of peripheral nerve ECM-derived matrixgel,Matrigel,laminin 521,collagen I,and collagen IV,and observed well-aligned axon bundles growing in the peripheral nerve ECM-derived environment.We confirmed that NCAM1 is necessary but not sufficient to trigger this phenomenon.A protein interaction assay identified collagen VI as an extracellular partner of NCAM1 in the regulation of axonal fasciculation.Collagen VI interacted with NCAM1 by directly binding to the FNIII domain,thereby increasing the stability of NCAM1 at the axolemma.Our in vivo experiments on a rat sciatic nerve defect model also demonstrated orderly nerve bundle regeneration with improved projection accuracy and functional recovery after treatment with 10 mg/m L Matrigel and 20μg/m L collagen VI.These findings suggest that the collagen VI-NCAM1 pathway plays a regulatory role in nerve bundle formation.This study was approved by the Animal Ethics Committee of Guangzhou Medical University(approval No.GY2019048)on April 30,2019.  相似文献   

12.
Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes.Therefore,there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area.In this study,we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor.This modified gelatin exhibited good physical and chemical properties,biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells.When injected into the epineurium of crushed nerves,the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration,functional recovery and vascularization.The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.  相似文献   

13.
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation,protein damage and DNA fragmentation.Increased oxidative stress is associated with the common pathological process of many eye diseases,such as glaucoma,diabetic retinopathy and ischemic optic neuropathy.Many studies have demonstrated that Lycium barbarum polysaccharides(LBP)protects against oxidative injury in numerous cells and tissues.For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200μM cobalt chloride(CoCl2)for 24 hours.To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury,the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours.The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis,inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential.These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.  相似文献   

14.
Long noncoding RNA(lncRNA)regulates the proliferation and migration of human retinal endothelial cells,as well as retinal neovascularization in diabetic retinopathy.Based on similarities between the pathogenesis of retinopathy of prematurity(ROP)and diabetic retinopathy,lncRNA may also play a role in ROP.Seven-day-old mice were administered 75±2% oxygen for 5 days and normoxic air for another 5 days to establish a ROP model.Expression of lncRNA and mRNA in the retinal tissue of mice was detected by high-throughput sequencing technology,and biological functions of the resulted differentially expressed RNAs were evaluated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The results showed that compared with the control group,57 lncRNAs were differentially expressed,including 43 upregulated and 14 downregulated,in the retinal tissue of ROP mice.Compared with control mice,42 mRNAs were differentially expressed in the retinal tissue of ROP mice,including 24 upregulated and 18 downregulated mRNAs.Differentially expressed genes were involved in ocular development and related metabolic pathways.The differentially expressed lncRNAs may regulate ROP in mice via microRNAs and multiple signaling pathways.Our results revealed that these differentially expressed lncRNAs may be therapeutic targets for ROP treatment.This study was approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University on February 25,2016(approval No.2016PS074K).  相似文献   

15.
The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal co...  相似文献   

16.
Compared with other stem cells,human induced pluripotent stem cells-derived neural progenitor cells(iPSC-NPCs)are more similar to cortical neurons in morphology and immunohistochemistry.Thus,they have greater potential for promoting the survival and growth of neurons and alleviating the proliferation of astrocytes.Transplantation of stem cell exosomes and stem cells themselves have both been shown to effectively repair nerve injury.However,there is no study on the protective effects of exosomes derived from iPSC-NPCs on oxygen and glucose deprived neurons.In this study,we established an oxygen-glucose deprivation model in embryonic cortical neurons of the rat by culturing the neurons in an atmosphere of 95%N2 and 5%CO2 for 1 hour and then treated them with iPSC-NPC-derived exosomes for 30 minutes.Our results showed that iPSC-NPC-derived exosomes increased the survival of oxygen-and glucose-deprived neurons and the level of brain-derived neurotrophic factor in the culture medium.Additionally,it attenuated oxygen and glucose deprivation-induced changes in the expression of the PTEN/AKT signaling pathway as well as synaptic plasticity-related proteins in the neurons.Further,it increased the length of the longest neurite in the oxygen-and glucose-deprived neurons.These findings validate the hypothesis that exosomes from iPSCNPCs exhibit a neuroprotective effect on oxygen-and glucose-deprived neurons by regulating the PTEN/AKT signaling pathway and neurite outgrowth.This study was approved by the Animal Ethics Committee of Sir Run Run Shaw Hospital,School of Medicine,Zhejiang University,China(approval No.SRRSH20191010)on October 10,2019.  相似文献   

17.
Long non-coding RNAs(lncRNAs)are abundantly expressed in the central nervous system and exert a critical role in gene regulation via multiple biological processes.To uncover the functional significance and molecular mechanisms of lncRNAs in spinal cord injury(SCI),the expression signatures of lncRNAs were profiled using RNA sequencing(RNA-seq)technology in a Sprague-Dawley rat model of the 10th thoracic vertebra complete transection SCI.Results showed that 116 of 14,802 detected lncRNAs were differentially expressed,among which 16—including eight up-regulated(H19,Vof16,Hmox2-ps1,LOC100910973,Ybx1-ps3,Nnat,Gcgr,LOC680254)and eight down-regulated(Rmrp,Terc,Ngrn,Ppp2r2b,Cox6a2,Rpl37a-ps1,LOC360231,Rpph1)—demonstrated fold changes>2 in response to transection SCI.A subset of these RNA-seq results was validated by quantitative real-time PCR.The levels of 821 mRNAs were also significantly altered post-SCI;592 mRNAs were up-regulated and 229 mRNAs were down-regulated by more than 2-fold.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses showed that differentially expressed mRNAs were related to GO biological processes and molecular functions such as injury and inflammation response,wound repair,and apoptosis,and were significantly enriched in 15 KEGG pathways,including cell phagocytosis,tumor necrosis factor alpha pathway,and leukocyte migration.Our results reveal the expression profiles of lncRNAs and mRNAs in the rat spinal cord of a complete transection model,and these differentially expressed lncRNAs and mRNAs represent potential novel targets for SCI treatment.We suggest that lncRNAs may play an important role in the early immuno-inflammatory response after spinal cord injury.This study was approved by the Administration Committee of Experimental Animals,Guangdong Province,China.  相似文献   

18.
Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC) is a demethoxy derivative of curcumin that has anti-proliferative,anti-inflammatory,and anti-oxidant properties.To determine whether BDMC has the potential to treat radiation-induced brain injury,in this study,we established a rat model of radiation-induced brain injury by administe ring a single 30-Gy v...  相似文献   

19.
Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who attempt suicide remains unknown.This observational cross-sectional study enrolled 41 young Internet addicts,aged from 15 to 20 years,from the Department of Psychiatry,the First Affiliated Hospital of Chongqing Medical University,China from January to May 2018.The participants included 21 individuals who attempted suicide and 20 individuals with Internet addiction without a suicidal attempt history.Brain images in the resting state were obtained by a 3.0 T magnetic resonance imaging scanner.The results showed that activity in the gyrus frontalis inferior of the right pars triangularis and the right pars opercularis was significantly increased in the suicidal attempt group compared with the non-suicidal attempt group.In the resting state,the prefrontal lobe of adolescents who had attempted suicide because of Internet addiction exhibited functional abnormalities,which may provide a new basis for studying suicide pathogenesis in Internet addicts.The study was authorized by the Ethics Committee of Chongqing Medical University,China(approval No.2017 Scientific Research Ethics(2017-157))on December 11,2017.  相似文献   

20.
Vascularization is an important factor in nerve graft survival and function. The specific molecular regulations and patterns of angiogenesis following peripheral nerve injury are in a broad complex of pathways. This review aims to summarize current knowledge on the role of vascularization in nerve regeneration, including the key regulation molecules, and mechanisms and patterns of revascularization after nerve injury. Angiogenesis, the maturation of pre-existing vessels into new areas, is stimulated through angiogenic factors such as vascular endothelial growth factor and precedes the repair of damaged nerves. Vascular endothelial growth factor administration to nerves has demonstrated to increase revascularization after injury in basic science research. In the clinical setting, vascularized nerve grafts could be used in the reconstruction of large segmental peripheral nerve injuries. Vascularized nerve grafts are postulated to accelerate revascularization and enhance nerve regeneration by providing an optimal nutritional environment, especially in scarred beds, and decrease fibroblast infiltration. This could improve functional recovery after nerve grafting, however, conclusive evidence of the superiority of vascularized nerve grafts is lacking in human studies. A well-designed randomized controlled trial comparing vascularized nerve grafts to non-vascularized nerve grafts involving patients with similar injuries, nerve graft repair and follow-up times is necessary to demonstrate the efficacy of vascularized nerve grafts. Due to technical challenges, composite transfer of a nerve graft along with its adipose tissue has been proposed to provide a healthy tissue bed. Basic science research has shown that a vascularized fascial flap containing adipose tissue and a vascular bundle improves revascularization through excreted angiogenic factors, provided by the stem cells in the adipose tissue as well as by the blood supply and environmental support. While it was previously believed that revascularization occurred from both nerve ends, recent studies propose that revascularization occurs primarily from the proximal nerve coaptation. Fascial flaps or vascularized nerve grafts have limited applicability and future directions could lead towards off-the-shelf alternatives to autografting, such as biodegradable nerve scaffolds which include capillary-like networks to enable vascularization and avoid graft necrosis and ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号