首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Afferent discharge generated ectopically in the cell soma of dorsal root ganglion (DRG) neurons may play a role in normal sensation, and it contributes to paraesthesias and pain after nerve trauma. This activity is critically dependent on subthreshold membrane potential oscillations; oscillatory sinusoids that reach threshold trigger low-frequency trains of intermittent spikes. Ectopic firing may also enter a high-frequency bursting mode, however, particularly in the event of neuropathy. Bursting greatly amplifies the overall ectopic barrage. In the present report we show that subthreshold oscillations and burst discharge occur in vivo, as they do in vitro. We then show that although the first spike in each burst is triggered by an oscillatory sinusoid, firing within bursts is maintained by brief regenerative post-spike depolarizing afterpotentials (DAPs). Numerical simulations were used to identify the cellular process underlying rebound DAPs, and hence the mechanism of the spike bursts. Finally, we show that slow ramp and hold (tonic) depolarizations of the sort that occur in DRG neurons during physiologically relevant events are capable of triggering sustained ectopic bursting, but only in cells with subthreshold oscillatory behavior. Oscillations and DAPs are an essential substrate of ectopic burst discharge. Therefore, any consideration of the ways in which cellular regulation of ion channel synthesis and trafficking implement normal sensation and, when disrupted, bring about neuropathic pain must take into account the effects of this regulation on oscillations and bursting.  相似文献   

2.
The membrane properties and morphological features of interneurons in the supratrigeminal area (SupV) were studied in rat brain slices using whole-cell patch clamp recording techniques. We classified three morphological types of neurons as fusiform, pyramidal, and multipolar and four physiological types of neurons according to their discharge pattern in response to a 1-sec depolarizing current pulse from -80 mV. Single-spike neurons responded with a single spike, phasic neurons showed an initial burst of spikes and were silent during the remainder of the stimulus, delayed-firing (DF) neurons exhibited a slow depolarization and delay to initial spike onset, and tonic (T) neurons showed maintained a discharge throughout the stimulus pulse. In a subpopulation of neurons (10%), membrane depolarization to around -44 mV produced a rhythmic burst discharge (RB) that was associated with voltage-dependent subthreshold membrane oscillations. Both these phenomena were blocked by the sodium channel blocker riluzole at a concentration that did not affect the fast transient spike. Low doses of 4-AP, which blocks low-threshold K+ currents, transformed bursting into low-frequency tonic discharge. In contrast, bursting occurred with exposure to cadium, a calcium-channel blocker. This suggests that persistent sodium currents and low-threshold K+ currents have a role in intrinsic burst generation. Importantly, RB cells were most often associated with multipolar neurons that exhibited either a DF or a T discharge. Thus, the SupV contains a variety of physiological cell types with unique morphologies and discharge characteristics. Intrinsic bursting neurons form a unique group in this region. .  相似文献   

3.
Xing JL  Hu SJ  Long KP 《Brain research》2001,901(1-2):128-136
An abundance of subthreshold membrane potential oscillations (SMPOs) at resting potential was observed in the neurons of chronically compressed dorsal root ganglia (DRG) using intracellular recording in vivo. Out of 386 neurons, 63 type A neurons displayed SMPOs. Three types of SMPOs were distinguished based on their characterizations of oscillation: (1) A regular pattern of SMPO emerged consistently with a mean frequency of 86 Hz and mean amplitudes of 3.3 mV. (2) A spindle-like pattern of SMPO was denominated by a spindle alteration of its amplitude. (3) An irregular pattern of SMPO had no rule on its change of amplitude and frequency. Compared with normal DRG neurons and injured DRG neurons but without SMPO, the injured DRG neurons with SMPO had the lowest spike rheobase, in accordance with the detection of spike accommodation. No significant differences among the three groups can be found in either membrane potential or input resistance. Further observation showed that the spontaneous discharge of hyperexcitable neurons usually occurred on the depolarizing phase of oscillations. In addition, the regular pattern of SMPO was based on the period and integer multiple patterns of spontaneous discharges. The spindle-like pattern of SMPO contributed to spontaneous bursting discharge. The irregular pattern of SMPO had a striking relation with irregular spontaneous discharge. The results show that neurons with SMPO in injured DRG have a higher excitability than those without SMPO, and that the SMPO underlie the patterns of spontaneous discharges, suggesting that SMPO is the basic electrophysiological change of hyperexcitable neurons.  相似文献   

4.
Neurons from layer II of the medial entorhinal cortex show subthreshold membrane potential oscillations (SMPOs) which could contribute to theta-rhythm generation in the entorhinal cortex and to generation of grid cell firing patterns. However, it is unclear whether single neurons have a fixed unique oscillation frequency or whether their frequency varies depending on the mean membrane potential in a cell. We therefore examined the frequency of SMPOs at different membrane potentials in layer II stellate-like cells of the rat medial entorhinal cortex in vitro. Using whole-cell patch recordings, we found that the fluctuations in membrane potential show a broad band of low power frequencies near resting potential that transition to more narrowband oscillation frequencies with depolarization. The transition from broadband to narrowband frequencies depends on the location of the neuron along the dorsoventral axis in the entorhinal cortex, with dorsal neurons transitioning to higher-frequency oscillations relative to ventral neurons transitioning to lower-frequency oscillations. Once SMPOs showed a narrowband frequency, systematic frequency changes were not observed with further depolarization. Using a Hodgkin-Huxley-style model of membrane currents, we show that differences in the influence of depolarization on the frequency of SMPOs at different dorsal to ventral positions could arise from differences in the properties of the h current. The properties of frequency changes in this data are important for evaluating models of the generation of grid cell firing fields with different spacings along the dorsal-to-ventral axis of medial entorhinal cortex.  相似文献   

5.
The origin of rhythm generation in mammalian spinal cord networks is still poorly understood. We have previously proposed that disinhibition-induced rhythms are based on intrinsic firing, recurrent excitation and several mechanisms to de-activate the network. In order to clarify these mechanisms we here investigated spontaneous spike discharge oscillations in rat spinal cord slice cultures using multi-electrode arrays and patch clamp. Episodes of such oscillations at 8.5 Hz spontaneously appeared in the ventral parts of the cultured slices. The rising phase of their initial cycles was entirely based on AMPA/kainate receptor-dependent recurrent excitation. Initial oscillations were changed into persistent activity by bicuculline and other blockers of GABA A, but not by blockers of glycine receptors, suggesting a role for GABAergic synaptic inhibition in network de-activation during oscillation cycles. Blockade of glycine receptors by strychnine caused a prolongation of oscillations and their spreading in the slice, suggesting that these receptors are mainly involved in the spatial and temporal restriction of oscillations. In most cultures, oscillations reappeared under disinhibition after an initial phase of persistent activity. Both spontaneous and disinhibition-induced oscillations were facilitated by riluzole, which enhances fast sodium current inactivation and thus leads to early cessation of firing during strong depolarization (depolarization block). In single cell recordings, episodes of strong depolarization were mostly seen during oscillations induced by disinhibition, but occasionally also during spontaneous oscillations. We conclude that both GABA A-mediated synaptic inhibition and depolarization block contribute to the de-activation of spinal cord networks during oscillation cycles.  相似文献   

6.
The firing of a proportion of neurons in the in vivo perirhinal cortex, a brain region involved in object recognition memory, has recently been shown to be synchronized with hippocampal theta activity. The purpose of the present study was to determine whether neurons located in perirhinal cortex have intrinsic properties that might encourage their participation in theta activity. To these ends, current clamp recordings were made from 98 neurons located in layer III/V of the in vitro rat perirhinal cortex. The intrinsic properties of these neurons were investigated, and a subset of 61 neurons were tested for the presence of membrane potential oscillations at threshold levels of depolarization. Thirty-nine percent of these neurons displayed a theta-frequency membrane potential oscillation (MPO; mean frequency = 8.6 Hz). When depolarized past spike threshold, these neurons tended to fire in clusters, with a within-cluster interspike interval close to the peak to peak interval of the MPOs. Neurons that did not generate MPOs generated nonaccomodating action potential trains with a frequency that spanned the theta range. Biocytin staining indicated that MPOs could be generated in cells with both pyramidal and nonpyramidal morphology. These findings demonstrate that a large proportion of perirhinal neurons exhibit intrinsic properties that could assist in the entrainment and synchronization of theta-frequency oscillations. These properties may enhance the communication of information between the perirhinal cortex, entorhinal cortex, and hippocampus.  相似文献   

7.
Response properties of neurons in brain slices of guinea pig parietal neocortex were examined following intracellular injection of the Ca2+ chelators, EGTA and BAPTA. Although chelator injection did not cause any consistent change in passive membrane properties, it did induce 81% of neurons encountered at all sub-pial depths to become 'bursters', in that just-threshold depolarizing current pulses triggered all-or-none bursts of 2 - 5 fast action potentials. Transition to 'burstiness' was associated with disappearance of an AHP and appearance of a DAP. Although chelator caused a slight increase in steady-state firing rate, marked accommodation persisted. Extracellular Co2+ or Mn2+ had an effect on steady-state firing rate similar to that of the intracellular chelators; however, exposure to these Ca2+ channel blockers also caused steady state depolarization, increased resting input resistance and time constant, and profound spike broadening. This treatment never induced transition to 'burstiness'. Chelator-injected neurons ceased to generate bursts when Ca2+ was replaced by Mn2+ in the Ringer's solution. During exposure to 10-6 M TTX and 20 mM TEA, 50 - 200 msec Ca2+ spikes followed brief depolarizing pulses. As chelator was injected into the cell, there was progressive prolongation of the Ca2+ plateaus, which was associated with slowing of the rate at which membrane resistance gradually recovered following the initial increase in conductance. These findings indicate that under normal conditions, activity-related increases in intracellular Ca2+ activate processes which prevent most neocortical neurons from being bursters. These processes probably include Ca2+-dependent K+ currents, and Ca2+-dependent Ca2+ channel inactivation.  相似文献   

8.
Excitatory actions of unspecific midbrain structures upon CA2–3 hippocampal neurons were studied intracellularly in curarized cats under barbiturate anesthesia. Midbrain stimulation induced EPSPs at long latencies in 62% of neurons tested. Responses contained one or, more commonly, a sequence of several, EPSPs which produced ‘oscillatory’ patterns. Individual EPSPs were characterized by a prolonged rising phase but differed in their time course after attaining the maximum. Variations observed have been interpreted as a result of interaction between different types of afferent influences and secondary hyperpolarizing processes of intrahippocampal origin. Average patterns of slow potential changes and spike discharges have been derived in an attempt to characterize the population activity induced in the CA2–3 region by mesencephalic stimulation. Observations on the modes of spike generation have led to the conclusion that output discharge of hippocampal neurons in response to activation of polysynaptic ascending pathways is defined, in a majority of cells, by electronic depolarization of the soma membrane brought about by axo-dendritic excitatory synapses. An involvement of apical dendrites in the transmission of excitatory effects was indicated by an increased discharge rate of fast prepotentials in those neurons spontaneously showing this type of activity.  相似文献   

9.
Network bursts and oscillations are forms of spontaneous activity in cortical circuits that have been described in vivo and in vitro. Searching for mechanisms involved in their generation, we investigated the collective network activity and spike discharge oscillations in cortical slice cultures of neonatal rats, combining multielectrode arrays with patch clamp recordings from individual neurons. The majority of these cultures showed spontaneous collective network activity [population bursts (PBs)] that could be described as neuronal avalanches. The largest of these PBs were followed by fast spike discharge oscillations in the beta to theta range, and sometimes additional repetitive PBs, together forming seizure-like episodes. During such episodes, all neurons showed sustained depolarization with increased spike rates. However, whereas regular-spiking (RS) and fast-spiking (FS) neurons fired during the PBs, only the FS neurons fired during the fast oscillations. Blockade of N-methyl-d-aspartate receptors reduced the depolarization and suppressed both the increased FS neuron firing and the oscillations. To investigate the generation of PBs, we studied the network responses to electrical stimulation. For most of the stimulation sites, the relationship between the stimulated inputs and the evoked PBs was linear. From a few stimulation sites, however, large PBs could be evoked with small inputs, indicating the activation of hub circuits. Taken together, our findings suggests that the oscillations originate from recurrent inhibition in local networks of depolarized inhibitory FS interneurons, whereas the PBs originate from recurrent excitation in networks of RS and FS neurons that is initiated in hub circuits.  相似文献   

10.
Driesang RB  Pape HC 《Neuroreport》2000,11(8):1703-1708
A majority of projection neurons in the lateral amygdala generate oscillatory spike firing in the theta-frequency range, largely due to intrinsic membrane properties. Here we report on the occurrence of spike doublets in about 70% of these cells. Spike doublets consisted of a fast initial and a second slower component, which were mediated by sodium- and calcium-dependent mechanisms, respectively. With increased level of depolarization, there was a gradual transition of fast action potentials, regular alternation of fast action potentials and spike doublets, regular spike doublets, and high-threshold oscillations. Fast Fourier transforms demonstrated the rhythmic nature of spike doublets at around 3 Hz with an intra-doublet frequency of 25-80 Hz. Spike doublets may thus contribute to the overall rhythmicity in the membrane potential patterns of projection cells and support the integration of synaptic input signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号