首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
Symbolic arithmetic is a complex, uniquely human ability that is acquired through direct instruction. In contrast, the capacity to mentally add and subtract nonsymbolic quantities such as dot arrays emerges without instruction and can be seen in human infants and nonhuman animals. One possibility is that the mental manipulation of nonsymbolic arrays provides a critical scaffold for developing symbolic arithmetic abilities. To explore this hypothesis, we examined whether there is a shared neural basis for nonsymbolic and symbolic double‐digit addition. In parallel, we asked whether there are brain regions that are associated with nonsymbolic and symbolic addition independently. First, relative to visually matched control tasks, we found that both nonsymbolic and symbolic addition elicited greater neural signal in the bilateral intraparietal sulcus (IPS), bilateral inferior temporal gyrus, and the right superior parietal lobule. Subsequent representational similarity analyses revealed that the neural similarity between nonsymbolic and symbolic addition was stronger relative to the similarity between each addition condition and its visually matched control task, but only in the bilateral IPS. These findings suggest that the IPS is involved in arithmetic calculation independent of stimulus format.  相似文献   

2.
This functional magnetic resonance imaging (fMRI) study systematically investigates whether there is a neurofunctional overlap of nonsymbolic numerical and spatial cognition in (intra)parietal regions in children and adults. The study also explores the association between finger use and (nonsymbolic) number processing across development. Twenty-four healthy individuals (12 children, 12 adults) were asked to make nonsymbolic numerical and spatial (experimental tasks) as well as color discriminations (control task). Using identical stimulus material across the three tasks disentangled nonsymbolic number representations from general attentional mechanisms, visual-spatial processing and response selection requirements. In both age groups, behavioral distance effects were obtained upon processing numerical (but not spatial and/or color) stimuli. Baseline imaging effects revealed age-dependent, partly overlapping activations of nonsymbolic numerical and spatial processing in the right posterior superior parietal lobe (PSPL) in adults only. Interestingly, regions more activated in children relative to adults were centred on bilateral supramarginal gyrus (SMG) and lateral portions of the anterior intraparietal sulcus (IPS), further extending to adjacent right post- and precentral gyrus, the latter of which has been reported to support grasping previously (Simon et al., 2002). Overall, our results are first evidence for an age-dependent neurofunctional link between areas supporting finger use and nonsymbolic number processing and furthermore, might be suggestive of a special role of fingers for the development of number magnitude representations and early arithmetic.  相似文献   

3.
The close behavioral parallels between the processing of quantitative information conveyed by symbolic and nonsymbolic stimuli led to the hypothesis that there exists a common cerebral representation of quantity (Dehaene, Dehaene-Lambertz, & Cohen, 1998). The neural basis underlying the encoding of number magnitude has been localized to regions in and around the intraparietal sulcus (IPS) by brain-imaging studies. However, it has never been demonstrated that these same regions are also involved in the quantitative processing of nonsymbolic stimuli. Using functional brain imaging, we explicitly tested the hypothesis of a common substrate. Angles, lines, and two-digit numbers were presented pairwise, one to the left and one to the right of the fixation point. In the three comparison tasks, participants (n = 18) pressed the key on the side of the largest quantity. In the three control tasks, they indicated the side on which dimming occurred. A conjunction analysis between the three subtractions (comparison task-control task) revealed a site in left IPS that is specifically responsive when two stimuli have to be compared quantitatively, irrespective of stimulus format. The results confirm the hypothesis that quantity is represented by a common mechanism for both symbolic and nonsymbolic stimuli in IPS. In addition, the interaction between task and type of stimulus identified a region anterior to the conjunction site, not specific for quantitative processing, but reflecting general processes loaded by number processing.  相似文献   

4.
Are symbolic and nonsymbolic numbers coded differently in the brain? Neuronal data indicate that overlap in numerical tuning curves is a hallmark of the approximate, analogue nature of nonsymbolic number representation. Consequently, patterns of fMRI activity should be more correlated when the representational overlap between two numbers is relatively high. In bilateral intraparietal sulci (IPS), for nonsymbolic numbers, the pattern of voxelwise correlations between pairs of numbers mirrored the amount of overlap in their tuning curves under the assumption of approximate, analogue coding. In contrast, symbolic numbers showed a flat field of modest correlations more consistent with discrete, categorical representation (no systematic overlap between numbers). Directly correlating activity patterns for a given number across formats (e.g., the numeral “6” with six dots) showed no evidence of shared symbolic and nonsymbolic number‐specific representations. Overall (univariate) activity in bilateral IPS was well fit by the log of the number being processed for both nonsymbolic and symbolic numbers. IPS activity is thus sensitive to numerosity regardless of format; however, the nature in which symbolic and nonsymbolic numbers are encoded is fundamentally different. Hum Brain Mapp 36:475–488, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

5.
The neural foundations of arithmetic learning are not well understood. While behavioral studies have revealed relationships between symbolic number processing and individual differences in children's arithmetic performance, the neurocognitive mechanisms that bind symbolic number processing and arithmetic are unknown. The current fMRI study investigated the relationship between children's brain activation during symbolic number comparison (Arabic digits) and individual differences in arithmetic fluency. A significant correlation was found between the numerical ratio effect on reaction times and accuracy and children's arithmetic scores. Furthermore, children with a stronger neural ratio effect in the left intraparietal sulcus (IPS) during symbolic number processing exhibited higher arithmetic scores. Previous research has demonstrated that activation of the IPS during numerical magnitude processing increases over the course of development, and that the left IPS plays an important role in symbolic number processing. The present findings extend this knowledge to show that children with more mature response modulation of the IPS during symbolic number processing exhibit higher arithmetic competence. These results suggest that the left IPS is a key neural substrate for the relationship between the relative of precision of the representation of numerical magnitude and school-level arithmetic competence.  相似文献   

6.
Introduction: Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. Method: This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Results: Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. Conclusions: The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with amusia may present a deficit in accessing nonsymbolic numerical representations from symbolic representations. The symbolic access deficit could reflect a widespread impairment in the establishment of cortico-cortical connections between association areas.  相似文献   

7.
Zhou X  Chen C  Zhang H  Xue G  Dong Q  Jin Z  Zhang L  Peng C  Zhao H  Guo Y  Jiang T  Chen C 《Brain research》2006,1099(1):109-120
Despite numerous studies on the neural basis of numerical processing, few studies have examined the neural substrates of one of the most basic numerical processing-number sequence recitation. The present study used fMRI to investigate neural substrates of number sequence recitation, focusing on the intraparietal sulcus (IPS) and perisylvian areas. This study used a 2 (number versus alphabet) x 2 (forward versus backward recitation) design. 12 Chinese undergraduates were asked to recite overtly but gently numerical and alphabetical sequences forward and backward. Results showed that, for both numerical and alphabetic sequences, the left IPS was activated when performing backward recitation, but not when performing forward recitation. In terms of perisylvian areas, all four tasks elicited activation in bilateral superior temporal gyrus and inferior frontal gyrus, but forward recitation elicited greater activation in the left posterior superior temporal gyrus than did backward recitation, whereas backward recitation elicited greater activation in the left inferior frontal gyrus than did forward recitation. These results suggest that forward recitation of numbers and the alphabet is typically based on verbal processing of numbers implemented in the perisylvian area, whereas backward recitation would likely require additional neural resources in the IPS.  相似文献   

8.
Neural correlates of symbolic and non-symbolic arithmetic   总被引:3,自引:0,他引:3  
Recent evidence suggests that areas in and around the intraparietal sulcus (IPS) represent magnitude in a stimulus-independent format. However, it has not been established whether the same is true for mental arithmetic or whether activation for higher level numerical processing diverges as a function of stimulus format. We addressed this question in a functional imaging study by presenting participants with simple addition problems using both symbolic (Arabic numerals) and non-symbolic (arrays of dots) stimuli. Conjunction analysis revealed common neural substrates for symbolic and non-symbolic addition in the anterior IPS bilaterally, left posterior IPS, medial frontal gyrus and left precentral gyrus. Right parietal and frontal cortex showed greater activation for non-symbolic addition. Our results demonstrate that mental arithmetic, studied using addition problems, is processed within the IPS independent of stimulus form. Additionally we examined whether exact and approximate addition conditions activated different neural substrates as a function of stimulus format. We did not find any differences between exact and approximate addition using symbolic and non-symbolic stimuli. This could be due to the inability of the participants to suppress exact calculation for single-digit addition problems. In contrast to recent findings, we found no significant activation for exact addition condition in left, language-related areas.  相似文献   

9.
Previous research has demonstrated that children recruit the intraparietal sulcus (IPS) during arithmetic, which has largely been attributed to domain‐specific processes such as quantity manipulations. However, the IPS has also been found to be important for domain‐general abilities, such as visuo‐spatial working memory (VSWM). Based on the current literature it is unclear whether individual differences in domain‐specific skills, domain‐general skills, or a combination of the two, are related to the recruitment of the IPS during arithmetic. This study examines how individual differences in both domain general and domain specific competencies relate to brain activity in the IPS during arithmetic, and whether the relationships are related to how brain activity is measured. In a sample of 44 school‐aged children, we found that VSWM was only weakly related to a neural index of arithmetic complexity (neural problem size effect), whereas symbolic number processing skills (symbolic comparison and ordering) were related to overall arithmetic activity (both small and large problems). By simultaneously examining multiple domain‐general and domain specific measures, we were also able to determine that symbolic skills were a stronger predictor of brain activity within the IPS than domain general skills such as VSWM and domain specific skills such as non‐symbolic number processing. Together, these findings highlight that neural problem size effect may reflect different cognitive processes than brain activity across both small and large arithmetic problems, and that symbolic number processing skills are a critical predictor of variability in IPS activity during arithmetic. Hum Brain Mapp 38:3941–3956, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Effect of language switching on arithmetic: a bilingual FMRI study   总被引:4,自引:0,他引:4  
The role of language in performing numerical computations has been a topic of special interest in cognition. The "Triple Code Model" proposes the existence of a language-dependent verbal code involved in retrieving arithmetic facts related to addition and multiplication, and a language-independent analog magnitude code subserving tasks such as number comparison and estimation. Neuroimaging studies have shown dissociation between dependence of arithmetic computations involving exact and approximate processing on language-related circuits. However, a direct manipulation of language using different arithmetic tasks is necessary to assess the role of language in forming arithmetic representations and in solving problems in different languages. In the present study, 20 English-Chinese bilinguals were trained in two unfamiliar arithmetic tasks in one language and scanned using fMRI on the same problems in both languages (English and Chinese). For the exact "base-7 addition" task, language switching effects were found in the left inferior frontal gyrus (LIFG) and left inferior parietal lobule extending to the angular gyrus. In the approximate "percentage estimation" task, language switching effects were found predominantly in the bilateral posterior intraparietal sulcus and LIFG, slightly dorsal to the LIFG activation seen for the base-7 addition task. These results considerably strengthen the notion that exact processing relies on verbal and language-related networks, whereas approximate processing engages parietal circuits typically involved in magnitude-related processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号