首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Gamma-ainobutyric acid type A (GABA(A)) receptor ionophore ligand t-[35S]butylbicyclophosphorothionate ([35S]TBPS) was used in an autoradiographic assay on brain cryostat sections to visualize and characterize atypical GABA-insensitive [35S]TBPS binding previously described in certain recombinant GABA(A) receptors and the cerebellar granule cell layer. Picrotoxinin-sensitive but 1-mM GABA-insensitive [35S]TBPS binding was present in the rat cerebellar granule cell layer, many thalamic nuclei, subiculum and the internal rim of the cerebral cortex, amounting in these regions up to 6% of the basal binding determined in the absence of exogenous GABA. Similar binding properties were detected also in human and chicken brain sections. Like the GABA-sensitive [35S]TBPS binding, GABA-insensitive binding was profoundly decreased by pentobarbital, pregnanolone, loreclezole and Mg2+. The binding was reversible and apparently dependent on Cl- ions. Localization of the GABA-insensitive [35S]TBPS binding was not identical to that of high-affinity [3H]muscimol binding and diazepam-insensitive [3H]Ro 15-4513 binding, two previously established receptor subtype-dependent binding heterogeneities in the rat brain. The present study reveals a component of the GABA-ionophore enriched in the thalamus and cerebellar granule cells, possibly representing poorly desensitized or desensitizing receptors.  相似文献   

2.
t- Butylbicyclophosphorothionate ( TBPS ), a derivative of potent GABA antagonistic cage convulsants, has recently been introduced ( Squires , R. F., J.E. Casida , M. Richardson, and E. Saederup (1983) Mol. Pharmacol. 13:326-336) as ligand for a GABA-A receptor-linked drug receptor. Using conventionally prepared washed membrane fractions from rat cerebral cortex, we have confirmed that in the presence of 200 mM NaBr [35S] TBPS binds to a high affinity population of binding sites (Kd 26 +/- 5 nM) and that muscimol inhibits [35S] TBPS binding (IC50 0.32 microM) allosterically. In 200 mM NaCl the apparent affinity of [35S] TBPS binding sites is lower (Kd 60 +/- 5 nM), and muscimol has biphasic effects with stimulation at low concentrations of muscimol (EC50 0.023 microM) followed by inhibition at high concentrations (IC50 0.72 microM). Both base line [35S] TBPS binding (in 200 mM NaCl) and muscimol inhibition of [35S] TBPS binding (in 200 mM NaBr) are bidirectionally modulated by the occupancy of benzodiazepine receptors with its ligands. Benzodiazepine receptor agonists, regardless of their structure, enhance and inverse benzodiazepine receptor agonists inhibit base line [35S] TBPS binding and muscimol inhibition of [35S] TBPS binding. Fourteen ligands for benzodiazepine receptors display a similar in vitro profile as benzodiazepine receptor agonists or inverse benzodiazepine receptor agonists on [35S] TBPS binding as their anti- or proconvulsive effects in vivo suggest (Jensen, L. H., E. N. Petersen, and C. Braestrup (1983) Life Sci. 33: 393-399). That [35S] TBPS binding sites are constituents of a GABA benzodiazepine receptor complex is also suggested by a number of membrane pretreatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In rats, the degeneration of the striato-nigral GABAergic pathway caused by the intrastriatal injection of kainic acid induced a marked decrease (65%) of GABA content and glutamic acid decarboxylase (GAD) activity and a dramatic increase (225%) in the binding of t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to a membrane preparation from the substantia nigra homolateral to the injected striatum. The increase in [35S]TBPS binding in the denervated substantia nigra was exclusively due to an increased density of binding sites (Bmax) with no change in the dissociation constant (kd). The enhancement in [35S]TBPS binding was almost completely reversed by the intraperitoneal administration of diazepam (3 mg/kg) to kainic acid-lesioned rats. Moreover, diazepam produced a significant decrease (30%) in the density of [35S]TBPS binding sites also in the sham-operated side. In contrast the 'in vitro' addition of the GABAA receptor antagonist bicuculline (1 microM) to the membrane preparation from the denervated substantia nigra further increased [35S]TBPS binding. These findings suggest the view that the increase of nigral [35S]TBPS binding is directly related to the inhibition in the function of nigral GABAergic synapses following the loss of the striato-nigral GABAergic pathway. Our results indicate that [35S]TBPS binding to brain structure is a potential tool to reveal alteration in the function of GABAA receptor complex elicited by physiological, pharmacological and pathological conditions.  相似文献   

4.
In order to clarify melatonin's pharmacological interaction with central gamma-aminobutyric acid (GABA) receptors, its effects on the binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS), which specifically labels GABA-gated chloride channels, was examined in the rat brain. Saturation binding studies indicated that the effect of melatonin (500 microM) was due to a significant decrease in binding site density (Bmax) while the dissociation constant (Kd) was unchanged. The central-type benzodiazepine (BZ) receptor site antagonist Ro15-1788 (flumazenil) did not reverse the effect of melatonin but blocked the effect of diazepam, indicating that central-type BZ sites do not mediate the effects of melatonin. Since the ability to allosterically inhibit TBPS binding is characteristic of GABA-positive ligands, these findings provide further evidence that the pharmacological effects of melatonin involve enhancement of central GABAergic activity.  相似文献   

5.
The gamma-aminobutyric acid (GABA) receptor-operated chloride channel complex was evaluated in mice selected for differential sensitivity to the ataxic effects of diazepam (diazepam-sensitive (DS) and diazepam-resistant (DR) lines). The ataxic effects of several drugs purported to produce some of their actions through the benzodiazepine-GABA receptor complex were examined using the rotarod test. The duration of impairment produced by diazepam, ethanol, 4,5,6,7-tetrahydroisoxazol[5,4-C]pyridine-3-ol (THIP) and phenobarbital was greater in the diazepam-sensitive than in the diazepam-resistant mice. In contrast, pentobarbital produced an equivalent duration of ataxia in the two lines. Muscimol-stimulated 36Cl- influx and the binding of [35S]t-butylbicyclophosphorothionate (TBPS) and [3H]flunitrazepam were measured using isolated brain membrane vesicles (microsacs). Depolarization-dependent 45Ca2+ uptake was measured in whole brain synaptosomes. Muscimol was a more potent stimulator of 36Cl- flux in the DS compared to the DR mice, although no difference between the lines was found in muscimol-stimulation of [3H]flunitrazepam binding. Flunitrazepam augmented the muscimol-stimulated 36Cl- uptake in the DS but not in the DR mice. However, no differences between the lines of mice were found in either density or affinity of [3H]flunitrazepam binding sites. Similarly, no differences in either the density or affinity of [35S]TBPS binding sites was found. Ethanol (10-45 mM) potentiated the muscimol-stimulation of 36Cl- in DS, with no effect in DR mice. However, ethanol inhibition of [35S]TBPS binding was equivalent in the two lines of mice. Pentobarbital produced an equal potentiation of the muscimol-stimulated 36Cl- flux in the two lines, but phenobarbital potentiated the muscimol-induced 36Cl- influx slightly more in DS mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Experiments were performed to characterize [35S]TBPS binding in rat cortical Synaptoneurosomes, which have vesicular structures containing both pre- and postsynaptic elements. Scatchard analysis revealed a single component of [35S]TBPS binding sites with KD and Bmax values of 76.1 nM and 1.97 pmoles/mg protein, respectively, under physiological conditions. GABA and muscimol inhibited [35S]TBPS binding in a concentration-dependent manner. IC50 values of these GABAA agonists in displacing synaptoneurosomal [35S]TBPS binding are comparable to previously reported EC50 values of the agonist-stimulated 36C1 uptake in Synaptoneurosomes by these agents. Furthermore, the IC50 values of these GABAA agonists were better correspondence to those determined by [3H]muscimol binding in synaptoneurosomal preparations as reported by Delorey and Brown (3) than those determined in membrane preparations. Although bicuculline increased [35S]TBPS binding in a concentration dependent manner in cortical membranes, it did not affect synaptoneurosomal [35S]TBPS binding. Benzodiazepine agonists and inverse agonists (0.1 to 10 μM) did not show any effects on the binding in the absence of muscimol. However, benzodiazepine agonists potentiated and inverse agonists antagonized muscimol-induced inhibition of synaptoneurosomal [35S]TBPS binding. In addition, an anesthetic steroid, THDOC, and pentobarbital inhibited synaptoneurosomal [35S]TBPS binding in a concentration dependent manner. These results suggest that allosteric modulation of [35S]TBPS binding by various ligands which interact with GABAA supramolecular complexes remain intact in Synaptoneurosomes. It appears that this preparation is useful for investigating correlation between functional 36Cl uptake and individual binding studies of each of the GABAA receptor complex.  相似文献   

7.
M.B. Meyers  H.L. Komiskey   《Brain research》1985,343(2):262-267
Benzodiazepine receptor binding and modulation by pentobarbital and ethanol was studied using the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate to solubilize the gamma-aminobutyric acid (GABA)-benzodiazepine receptor-ionophore complex from the brains of Fischer 344 rats of 3-4, 12-15 and more than 28 months of age. The affinity of the benzodiazepine binding site was significantly lower in the young rats compared to either the mature or senescent animals. However, no age-related changes in the maximum number of benzodiazepine binding sites or GABA concentrations occurred in the detergent extract. Pentobarbital produced practically identical dose-dependent enhancement of [3H]flunitrazepam specific binding in all 3 age groups. In contrast, ethanol between 0.1 and 200 microM failed to produce a dose-dependent effect on [3H]flunitrazepam specific binding in any age group. The effect of pentobarbital and ethanol on [35S]t-butyl-bicyclophosphorothionate [( 35S]TBPS) specific binding to the picrotoxinin binding site was examined in the above solubilized receptor/ionophore complex under the same binding conditions. Both sedative-hypnotics produced a dose-dependent decrease in [35S]TBPS specific binding. However, pentobarbital was over 10,000 times more potent. It appears that ethanol may not enhance [3H]flunitrazepam specific binding in this solubilized preparation because of its weak action at the picrotoxinin binding site.  相似文献   

8.
Ethynylbicycloorthobenzoate (EBOB) is a recently developed ligand that binds to the convulsant site of the GABAA receptor. While a few studies have examined the binding of [3H]EBOB in vertebrate brain tissue and insect preparations, none have examined [3H]EBOB binding in preparations that express known configurations of the GABAA receptor. We have thus examined [3H]EBOB binding in HEK293 cells stably expressing human alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and the effects of CNS convulsants on its binding. The ability of the CNS convulsants to displace the prototypical convulsant site ligand, [35S]TBPS, was also assessed. Saturation analysis revealed [3H]EBOB binding at a single site, with a K(d) of approximately 9 nM in alpha1beta2gamma2 and alpha2beta2gamma2 receptors. Binding of both [3H]EBOB and [35S]TBPS was inhibited by dieldrin, lindane, tert-butylbicycloorthobenzoate (TBOB), PTX, TBPS, and pentylenetetrazol (PTZ) at one site in a concentration-dependent fashion. Affinities were in the high nM to low microM range for all compounds except PTZ (low mM range), and the rank order of potency for these convulsants to displace [3H]EBOB and [35S]TBPS was the same. Low [GABA] stimulated [3H]EBOB binding, while higher [GABA] (greater than 10 microM) inhibited [3H]EBOB binding. Overall, our data demonstrate that [3H]EBOB binds to a single, high affinity site in alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and modulation of its binding is similar to that seen with [35S]TBPS. [3H]EBOB has a number of desirable traits that may make it preferable to [35S]TBPS for analysis of the convulsant site of the GABAA receptor.  相似文献   

9.
[3H]-t-Butylbicycloorthobenzoate ([3H]TBOB), a convulsant, is known to label a binding site on the GABAA receptor complex. Bicuculline methochloride (bicuculline MCl), folic acid, pentazocine, naloxone, ethyl-beta-carboline-3-carboxylate (beta CCE) and Ro 5-4864 have (pro)convulsive properties in vivo. In the present study, we determined the extent to which these compounds modify the binding of [3H]TBOB in the presence of IC50 amounts of GABA (5 microM) or diazepam (50 microM). We found that the GABA antagonist bicuculline MCl reversed the inhibitory effect of GABA on [3H]TBOB binding completely, as was expected. Folic acid, pentazocine and naloxone also reversed the inhibitory effect of GABA on [3H]TBOB binding. This finding is compatible with the view that the proconvulsive effects of these compounds can be credited to a reduction of GABAergic action at the GABAA receptor complex. We suggest that the reversal of GABA's inhibition of [3H]TBOB binding is a sufficient (but not a necessary) condition to predict proconvulsive (side) effects of drugs. beta CCE and Ro 5-4864 modified [3H]TBOB binding in the presence of GABA in a biphasic fashion. A unique relation between beta CCE, Ro 5-4864 and the GABAA complex might exist. Bicuculline MCl reversed the inhibitory effect of diazepam on [3H]TBOB binding only partly. beta CCE did not reverse the inhibitory effect of diazepam on [3H]TBOB binding, neither did Ro 5-4864. The presence of a GABA-independent interaction between a low affinity benzodiazepine recognition site and the TBOB site is proposed.  相似文献   

10.
Thirteen substances previously reported to antagonize the electrophysiological effects of gamma-aminobutyric acid (GABA) on neurons also reversed the inhibitory effects of GABA on specific [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to sites on rat brain membranes in vitro with a rank-order of potencies similar to those found in electrophysiological systems (R 5135 greater than pitrazepin greater than bicuculline greater than SR 95103 greater than securinine) confirming the earlier conclusion that GABA inhibits [35S]TBPS binding by acting allosterically on physiologically relevant GABAA receptors. Pitrazepin is the most potent of a series of mono N-aryl piperazines that block GABAA receptors. The new aryl amino pyridazine GABA derivative SR 95531 was about 3-fold more potent than bicuculline and 39-fold more potent than the structurally related SR 95103. Four known GABA antagonists have the same rank orders of potencies as convulsants and as reversers of GABA's inhibitory action on [35S]TBPS binding (bicuculline greater than securinine greater than theophylline greater than caffeine). Reversal of GABA-induced suppression of [35S]TBPS binding provides a simple method for further characterizing GABAA receptors linked to TBPS binding sites, and facilitates identification of convulsants and novel, perhaps selective, GABA antagonists.  相似文献   

11.
This study examined the nature of the interactions of etifoxine, an anxiolytic and anticonvulsant compound, with the GABA(A) receptor/chloride channel complex. In membrane preparations of Sprague-Dawley rat cerebral cortex, etifoxine competitively inhibited the binding of [35S]t-butylbicyclophosphoro-thionate (TBPS), a specific ligand of the GABA(A) receptor chloride channel site. In vivo studies demonstrated an anticonvulsant effect of etifoxine (50 and 75 mg/kg, i.p.) against the clonic convulsions induced by TBPS in CD1 mice. Flumazenil (10 and 40 mg/kg, i.p.), an antagonist of benzodiazepine sites at GABA(A) receptors, had no effect on the action of etifoxine. These findings suggest that etifoxine exerts its effect by interacting with the Cl- channel of GABA(A) receptors and probably by facilitating GABAergic inhibition.  相似文献   

12.
Effects of protein kinase C (PKC) activation on the function of the GABA/benzodiazepine receptor-chloride complex were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam and [35S]TBPS in rat brain slices. The density of [3H]muscimol binding was highest in cerebellar granular layers and high in both the frontal cortex and thalamus, but binding levels in the hippocampus were low. After activation of PKC by 100 nM phorbol-12,13-dibutyrate (PDBu), [3H]muscimol binding was decreased in the frontal cortex, striatum and thalamus, but binding levels were not changed in the hippocampus or cerebellum. The density of [3H]flunitrazepam binding was high in the cortex, hippocampus and molecular layers of cerebellum but was low in thalamus. PDBu increased the [3H]flunitrazepam binding only in the striatum and in part of the cortex and thalamus after activation of PKC. After activation of PKC by PDBu, [35S]TBPS binding was increased in most areas, but binding levels were not changed in the brainstem or cerebellum. The receptor binding was markedly decreased in almost all areas by the addition of 2.5 mM Mg2+. Elevated [35S]TBPS binding produced by PDBu was significantly inhibited by the addition of Mg2+. These results suggest that the activation of PKC potentiates benzodiazepine and TBPS binding, but decreases muscimol binding in a region-specific manner in the rat brain.  相似文献   

13.
Previous studies have shown that ethanol may produce some of its effects by facilitation of GABAergic transmission. One of the potential sites of drug action at the GABA receptor complex is the picrotoxin site, which can be studied with [35S]t-butylbicyclophosphorothionate (TBPS). Ethanol inhibited the binding of [35S]TBPS to C57 mice brain regions in vitro. This inhibition appears to be noncompetitive since ethanol decreased the Bmax and not the KD value of [35S]TBPS. C57 mice were chronically treated with ethanol in liquid diet to determine if the sensitivity of TBPS binding is altered following chronic treatment or during withdrawal. Chronic treatment with ethanol and during withdrawal did not alter the KD or Bmax values of [35S]TBPS binding in C57 mice brain regions. It is suggested that the sensitivity of picrotoxin site on the oligomeric GABA receptor complex is not altered during ethanol tolerance or withdrawal. The effects of ethanol on GABA system may be mediated by its interaction with the coupling mechanism(s) or a direct effect on the chloride channels.  相似文献   

14.
Oh S  Jang CG  Ma T  Ho IK 《Brain research》1999,850(1-2):158-165
Effects of protein kinase C (PKC) activation on the function of the GABA/benzodiazepine receptor-chloride complex were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam and [35S]TBPS in rat brain slices. The density of [3H]muscimol binding was highest in cerebellar granular layers and high in both the frontal cortex and thalamus, but binding levels in the hippocampus were low. After activation of PKC by 100 nM phorbol-12,13-dibutyrate (PDBu), [3H]muscimol binding was decreased in the frontal cortex, striatum and thalamus, but binding levels were not changed in the hippocampus or cerebellum. The density of [3H]flunitrazepam binding was high in the cortex, hippocampus and molecular layers of cerebellum but was low in thalamus. PDBu increased the [3H]flunitrazepam binding only in the striatum and in part of the cortex and thalamus after activation of PKC. After activation of PKC by PDBu, [35S]TBPS binding was increased in most areas, but binding levels were not changed in the brainstem or cerebellum. The receptor binding was markedly decreased in almost all areas by the addition of 2.5 mM Mg2+. Elevated [35S]TBPS binding produced by PDBu was significantly inhibited by the addition of Mg2+. These results suggest that the activation of PKC potentiates benzodiazepine and TBPS binding, but decreases muscimol binding in a region-specific manner in the rat brain.  相似文献   

15.
Postmortem cerebellar and frontal cortical membrane homogenates from human alcoholics, control subjects without neurological or psychiatric illnesses, and rats that chronically drank alcohol were studied to determine the binding characteristics of an imidazobenzodiazepine, [3H]Ro 15-4513. This ligand binds to classical gamma-aminobutyric acidA (GABAA)/benzodiazepine receptors, as well as to a "diazepam-insensitive" site associated with the GABAA receptor complex in the cerebellar granule cell layer. There were no differences in the density of the binding sites between alcoholics and their controls, between alcohol-drinking AA rats that had a choice between 10% alcohol or water for about 10 weeks and their controls, or between Wistar rats that had been given 20% alcohol as their only fluid for 4 months and their controls, which were pair-fed isocalorically with sucrose. The affinity for the cerebellar binding of [3H]Ro 15-4513 was higher in the alcoholics than the controls. No differences were observed in the frontocortical binding. No affinity differences were observed in the rat models. There were no differences between the groups in the characteristics of [3H]Ro 15-4513 binding to human cerebellum in the presence of micromolar diazepam, thus revealing the diazepam-insensitive binding. When this component was subtracted from the total cerebellar binding, to reveal the diazepam sensitive binding, both the KD and Bmax were lower in the alcoholic than the control group. The binding of [3H]muscimol, a GABAA agonist, tended to be higher in the frontal cortices of alcoholics; a similar trend for greater effects was observed in the alcoholics for the GABA inhibition of [3H]Ro 15-4513 binding. These results suggest that no drastic changes occur through chronic alcohol abuse in the numbers of cerebellar and frontocortical benzodiazepine receptors in humans and rodent models; however, the data indicate that the alcoholics have either acquired or innate differences in classical benzodiazepine recognition sites of the cerebellum and in the coupling of these sites to GABAA sites in the frontal cortex, without any differences in cerebellar granule cell-specific diazepam-insensitive [3H]Ro 15-4513 binding sites.  相似文献   

16.
The effects of a series of caprolactam derivatives with central depressant, convulsant or muscle relaxant activity were investigated upon γ-aminobutyric acid (GABA) receptor-ionophore binding to rat brain membranes using [3H]GABA, [3H]muscimol and [35S]-tert.-butylbicyclophophorothionate ([35S]TBPS) as ligands, and GABA resonses in mouse spinal cord neurones in dissociated cell culture. Some caprolactams produced a picrotoxin-like chloride-dependent partial inhibition of muscimol binding and were potent inhibitors of TBPS binding. One compound that was further investigated (4,4,6,6,-tetramethylhexahydro-2H-azepin-2-one), inhibited GABA responses and increased the frequency of paroxysmal depolarizations in cultured neurones. Other caprolactams enhanced muscimol binding and were relatively weak inhibitors of TBPS binding, and one (3,3-diallyl-6,6-dimethylhexahydro-2H-azepin-2,4-dione) was shown to enhance GABA responses and produced quiescence of activity in cultured neurones. There was a direct correaltion between caprolactam effects on muscimol binding in the presence of chloride ions and their effects on TBPS binding suggesting a similar site of action for the caprolactams influencing the binding of these two ligands. For the two classes of caprolactams, with respect to inhibition or enhancement of muscimol binding, there appeared to be a relationship between in vitro effects and their convulsant or depressant activity in mice. Caprolactams may be useful low molecular weight probes for the study of GABA receptor-ionophore complexes.  相似文献   

17.
The spontaneous and potassium-evoked release of [14C]-label from rat spinal cord slices preloaded with [14C]L-glutamic acid and its modification by GABA and related drugs, such as flurazepam, was studied as a possible indirect measure of presynaptic inhibition and of the ability of benzodiazepines to augment it. GABA (100 microM) reduced the spontaneous release of [14C]-label (glutamate) provided that GABA metabolism was blocked by amino-oxyacetic acid (AOAA), but failed to reduce the potassium-evoked release of glutamate, although muscimol (10 microM) had some effect. In contrast, flurazepam (1-100 microM) did not affect spontaneous release but produced some inhibition of the evoked release (through a system insensitive to 10 microM bicuculline). This inhibition became more marked in the presence of both GABA and AOAA, and was then overcome by bicuculline. It is concluded that either some benzodiazepine receptors must be occupied for GABA to produce an effect on evoked release and/or, that the benzodiazepines can only augment GABA function once a certain amount has been released. Studies of the rapid distribution of [14C]-label from glutamate, to GABA, glutamine and other amino acids, using high voltage electrophoresis, showed the importance of blocking metabolic pathways in studies of this kind.  相似文献   

18.
Single or repeated electroconvulsive shock (ECS) treatment-induced changes in [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding patterns in specific regions, i.e., cerebral cortex, cerebellum, hippocampus, and striatum of rat brain were investigated. Specific [35S]TBPS binding in these brain regions was not altered following a single or repeated administration of ECS, nor was the inhibition of [35S]TBPS binding to GABA affected. These observations tend to suggest that the picrotoxin-site on the GABA receptor complex may not be directly involved in electroconvulsive shock.  相似文献   

19.
alpha-[3H]Dihydropicrotoxinin (DHP) and [3H]diazepam binding proteins were solubilized from rat brain membranes with 1% Lubrol-Px. Gel filtration of the Lubrol-solubilized fraction revealed that [3H]DHP and [3H]diazepam bind to two distinct peaks with apparent molecular weights of 185,000 and 61,000, respectively. The signal-to-noise ratio of [3H]DHP binding to 185,000-dalton fractions was improved significantly. [3H]DHP bound to the 185,000-dalton fraction with two binding constants. Muscimol and pentobarbital, while enhancing [3H]diazepam binding to membrane and crude Lubrol-solubilized fractions, failed to enhance [3H]diazepam binding to the 61,000-dalton fraction. Pentobarbital inhibited the binding of [3H]DHP to the 185,000-dalton fraction with an IC50 value of 60 +/- 12 micro M. The binding of [3H]DHP alos was inhibited by several depressant and convulsant drugs which affect gamma-aminobutyric acid (GABA)-mediated transmission. These results provide strong evidence that picrotoxinin and diazepam bind to two distinct proteins and that pentobarbital may act at the picrotoxinin-sensitive site of the benzodiazepine . GABA receptor . ionophore complex.  相似文献   

20.
Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号