首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The permissivity of adult olfactory bulb to the ingrowth of olfactory axons could be due to the unique properties of ensheathing glia. To test whether these glial cells could be used to promote axonal regeneration in a spontaneously nonregenerating system, we transplanted suspensions of pure ensheathing cells into a rhizotomized spinal cord segment. Ensheathing cells were purified away from other cell types by immunoaffinity, using anti-p75 nerve growth factor receptor. After laminectomy at the lower thoracic level, the spinal cord was exposed and one dorsal root (T10) was completely transected at the cord entry point. The root stump was microsurgically anastomosed to the cord and a suspension of ensheathing cells was transplanted in the spinal cord at the dorsal root entry zone. Three weeks after transplantation, numerous regenerating dorsal root axons were observed reentering the spinal cord. Ingrowth of dorsal root axons was observed using Dil and antibodies against calcitonin gene-related peptide and growth-associated protein. Primary sensory afferents invaded laminae 1, 2, and 3, grew through laminae 4 and 5, and reached the dorsal grey commissure and lamina 4 of the contralateral side. We did not observe regenerating axons within the ipsilateral ventral horn and dorsal column. Transplanted ensheathing cells reached the same laminae as axons. Neither ensheathing cells nor regenerating axons invaded those laminae they did not inervate under normal circumstances. In conclusion, the regeneration of injured dorsal root axons into the adult spinal cord was possible after ensheathing glia transplantation. The use of ensheathing cells as stimulators of axonal growth might be generalized to other central nervous system injuries.  相似文献   

2.
Functionally useful repair of the mature spinal cord following injury requires axon growth and the re-establishment of specific synaptic connections. We have shown previously that axons from peripherally grafted human embryonic dorsal root ganglion cells grow for long distances in adult host rat dorsal roots, traverse the interface between the peripheral and central nervous system, and enter the spinal cord to arborize in the dorsal horn. Here we show that these transplants mediate synaptic activity in the host spinal cord. Dorsal root ganglia from human embryonic donors were transplanted in place of native adult rat ganglia. Two to three months after transplantation the recipient rats were examined anatomically and physiologically. Human fibres labelled with a human-specific axon marker were distributed in superficial as well as deep laminae of the recipient rat spinal cord. About 36% of the grafted neurons were double labelled following injections of the fluorescent tracers MiniRuby into the sciatic and Fluoro-Gold into the lower lumbar spinal cord, indicating that some of the grafted neurons had grown processes into the spinal cord as well as towards the denervated peripheral targets. Electrophysiological recordings demonstrated that the transplanted human dorsal roots conducted impulses that evoked postsynaptic activity in dorsal horn neurons and polysynaptic reflexes in ipsilateral ventral roots. The time course of the synaptic activation indicated that the human fibres were non-myelinated or thinly myelinated. Our findings show that growing human sensory nerve fibres which enter the adult deafferentated rat spinal cord become anatomically and physiologically integrated into functional spinal circuits.  相似文献   

3.
Previous observations show that neonatal removal of nerve growth factor results in an increased number of fine dorsal root axons in the adult animal. The present study shows that the same treatment results in 49% more axons in the adult tract of Lissauer, which is an area of spinal white matter that contains predominantly fine primary afferent axons. These data are consistent with the idea that postnatal removal of NGF leads to increased numbers of fine primary afferent axons which then pass into the white matter of the spinal cord and there make synaptic contacts. If so, this would be a useful preparation for studies on the mechanisms by which newly formed sensory axons can be induced to enter the spinal cord postnatally.  相似文献   

4.
Studies of potentials for dorsal spinal nerve root axons to regrow into the spinal cord involved placement of the tracer HRP/WGA-HRP on the cut end of the nerve root. Following this procedure, labeled neurons were found within the spinal dorsal gray matter. Analyses revealed that spinal neurons influenced by the presence of radiation-induced intraspinal Schwann cells extend misdirected processes into the dorsal root.  相似文献   

5.
Although Schwann cells are able to enter the central nervous system (CNS) when the integrity of the glia limitans is disrupted, their ability to migrate through intact CNS remains unclear. We have addressed this issue by transplanting lacZ-labeled Schwann cells into normal adult spinal cord white matter, and into X-irradiated spinal cord (an environment that, unlike normal spinal cord, permits the migration of transplanted oligodendrocyte progenitors). Schwann cell cultures, obtained from neonatal rat sciatic nerve and expanded using bovine pituitary extract and forskolin, were transfected by repeated exposure to retroviral vectors encoding the Escherichia coli lacZ gene. The normal behavior of the transduced cells was confirmed by transplantation into a nonrepairing area of demyelination in the spinal cord, where they formed myelin sheaths around demyelinated axons. A single microliter containing 4 x 10(4) cells was then transplanted into unlesioned normal and X-irradiated white matter of the spinal cord of adult syngeneic rats. One hour after injection, blue cells were observed as a discrete mass within the dorsal funiculus with a longitudinal distribution of 2-3 mm, indicating the extent of passive spread of the injected cells. At subsequent survival times (1, 2, and 4 weeks posttransplantation) blue cells had a distribution that was no more extensive than that seen 1 h after transplantation. However, the number of Schwann cells declined with time following transplantation such that at 4 weeks there were few surviving Schwann cells in both X-irradiated and nonirradiated spinal cord. These results indicate that transplanted Schwann cells do not migrate extensively and show poor long-term survival when introduced into a normal CNS environment.  相似文献   

6.
The central projections of primary sensory afferents innervating the caudal region of the pectoral fin of the long-tailed stingray (Himantura fai) were labeled by applying the lipophilic carbocyanine dye DiI to the dorsal roots in fixed tissue. These observations were complemented by examination of hemotoxylin and eosin-stained paraffin sections of the dorsal root entry zone, and transmission electron microscopy of the dorsal horn. Transverse sections of the sensory nerve and dorsal root revealed two distinct myelinated axon sizes in the sensory nerve. Although the thick and thin axons do not appear to group together in the sensory nerves and dorsal root, they segregate into a dorsally directed bundle of thin fibers and a more horizontally directed bundle of thick fibers soon after entering the spinal cord. In DiI-labeled horizontal sections, fibers were observed to enter the spinal cord and diverge into rostrally and caudally directed trajectories. Branching varicose axons could be traced in the dorsal horn gray matter in the segment of entry and about half of the adjacent rostral and caudal segments. In transverse and sagittal sections, DiI-labeled afferents were seen to innervate the superficial and, to a lesser extent, deeper laminae of the dorsal horn, but not the ventral horn. Electron microscopy of unlabeled dorsal horn sections revealed a variety of synaptic morphologies including large presynaptic elements (some containing dense-core vesicles) making synaptic contacts with multiple processes in a glomerular arrangement; in this respect, the synaptic ultrastructure is broadly similar to that seen in the dorsal horn of rodents and other mammals.  相似文献   

7.
To overcome obstacles to the regeneration of crushed dorsal root fibers at the dorsal root entry zone, we have employed specially designed Millipore implants coated with embryonic astrocytes to serve as a substrate for axonal growth. This strategy was successful in promoting the growth of crushed dorsal root axons into the grey matter of the adult mammalian spinal cord in a small number of animals. Fiber ingrowth into the spinal cord was closely associated with the surface of the polymer implant. In addition, unique terminal arbor malformations, not normally present, were seen in several animals. A consistent finding was the presence of a limited inflammatory response in regions immediately adjacent to the implant where axons penetrate the spinal cord. Our findings suggest that providing the dorsal root entry zone with an embryonic milieu can stimulate a limited amount of axonal regeneration into the adult mammalian spinal cord.  相似文献   

8.
In five adult cats and three adult monkeys the dorsal rootlets at cervical and various lumbar levels were examined by both light and electron microscopy. In both species, the rootlets could be divided into three anatomically distinct parts: a peripheral, a transitional, and a central zone. The anatomy of the peripheral and transitional parts of the cat were identical with those of the monkey. The peripheral part of the rootlet in both these species had many of the ultrastructural characteristics of a peripheral nerve: and, as in the peripheral nerve, the small caliber axons were randomly distributed throughout the rootlet. In the transitional part of the rootlet, where the anatomical characteristics change to those typifying the tracts of the central nervous system, the unmyelinated axons and small caliber myelinated axons become organized into bundles at the periphery of the fascicles of large myelinated axons. In the central part there were differences between the two species in the distribution of the unmyelinated axons. In the cat no reorganization of the fibers of the central part of the rootlet could be found: the rootlets entered the cord and passed through the dorsal part of Lissauer's tract, and the bundles of unmyelinated axons simply merged with the tract as they came into contact with it. In the monkey, however, the dorsal root enters dorsal to Lissauer's tract and as each part of the rootlet passed from transitional to central, the small caliber axons took a ventrolateral course within the rootlet. As the rootlet merged with the dorsal columns, these axons formed a single bundle on the ventral and lateral surface of the rootlet which then merged with Lissauer's tract. These results indicate that a “lateral division” of the dorsal root is present in the monkey, but not the cat.  相似文献   

9.
In young adult female rats, autologous sciatic nerve segments were transplanted to the thoracic region of the spinal cord. The grafts became well innervated but led to no obvious functional improvement. The origin and termination of axons in the grafts was studied by retrograde neuronal labeling with horseradish peroxidase (HRP) and radioautographic axonal tracing. Studies with HRP indicated that some axons in the grafts originated from intrinsic CNS neurons with their cell bodies in nearby segments of the spinal cord and that others arose from dorsal root ganglia at the level of the grafts and at least 7 segments distal to them. After tritiated amino acids were injected into lumbar dorsal root ganglia, labeled axons could be followed into the grafts but not into the rostral spinal cord stumps. Together with other experimental observations, these results demonstrate a correlation between success or failure of elongation of dorsal root fibers and peripheral or central ensheathment at the axonal tip. The corticospinal tract was studied both with radioautography and retrograde axonal transport of HRP but no extension of its axons into peripheral nerve grafts was detected under these experimental conditions. The findings implicate both neuroglial and axonal factors in the feeble regenerative response usually seen after injury to the spinal cord.  相似文献   

10.
G Sobue  T Yasuda  T Mitsuma  D Pleasure 《Neurology》1989,39(7):937-941
We examined immunohistochemically the dorsal root ganglia, sympathetic ganglia, spinal cord, ventral and dorsal roots, and sciatic nerves obtained at autopsy from adult humans, using a monoclonal antibody against the human nerve growth factor receptor. We observed labelling in a granular pattern in the neuronal perikarya of dorsal root and sympathetic nerve ganglia. Ventral horn cells and axons were not labelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号