首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma.  相似文献   

2.
Despite the general capacity of peripheral nervous system to regenerate, peripheral nerve injury is often followed by incomplete recovery of function, sometimes with the burden of neuropathic pain. The mechanisms of both regeneration and nociception have not been clarified, but it is known that inflammatory reactions are involved. Cu/Zn-superoxide dismutase (SOD1) is an important scavenger protein that acts against oxidative stress. It has been shown to play an important role in apoptosis and inflammation. The aim of this study was to examine the role of SOD1 overexpression in peripheral nerve regeneration and neuropathic pain-related behavior in mice. Sciatic nerves of SOD1-overexpressing and FVB/N wild type-mice were transected and immediately resutured. Evaluation of motor and sensory function and autotomy was carried out during 4 weeks of followup. We found markedly worse sciatic function index outcome as well as more significant atrophy of denervated muscles in SOD1-overexpressing animals compared with wild type. Autotomy was markedly worse in SOD1 transgenic mice than in wild-type animals. Histological evaluation revealed that the intensity of regeneration features, including numbers of GAP-43-positive growth cones, Schwann cells, and macrophages in the distal stump of the transected nerve, was also decreased in transgenic mice. Neuroma formation at the injury site was significantly more prominent in this group. Taken together, our findings suggest that SOD1 overexpression is deleterious for nerve regeneration processes and aggravates neuropathic pain-like state in mice. This can be at least partially ascribed to disturbed inflammatory reactions at the injury site.  相似文献   

3.
The long-term outcome of peripheral nerve injury is often unsatisfactory, especially if the injury resulted in a gap between transected nerve stumps. Brain-derived neurotrophic factor and its receptor, trkB, are strongly implicated in the early phase of axonal regeneration after injury. We examined the role of trkB in long-term functional and morphological outcome of peripheral nerve injury. The sciatic nerve was transected in wild-type and heterozygous trkB-deficient mice. The nerve was either left cut or immediately sewn up or the gap injury model was performed. The gap was provided with autologous or cross (obtained from other genetic group) graft. Sciatic nerve function as well as autotomy was assessed during 16-week follow-up. The long-term functional outcome of nerve cut or immediately rejoined did not differ between wild-type and trkB-deficient mice. Gap injury provided with nerve graft resulted in better functional outcome in trkB-deficient mice than wild-type animals. Sixteen weeks after the surgery, the animals were sacrificed and histological evaluations were performed. The number of nerve fibres regenerating into the distal stump of transected and rejoined nerves did not differ between wild-type and trkB-deficient animals. TrkB deficiency markedly increased the number of Schwann cells as well as mast cells at the injury site and in the distal stump of the regenerating nerve. TrkB deficient nerves also showed higher expression of bcl-2 protein but lower of trkA and NGF than wild-type ones. Our results show for the first time the possible deleterious role of trkB receptor in long-term outcome of peripheral nerve injury.  相似文献   

4.
Peripheral nerve injury is often followed by incomplete recovery of function and sometimes associated with neuropathic pain. There is, therefore, need for therapies which improve the speed of recovery and the final functional outcome after peripheral nerve injuries. In addition, neuropathic pain is not easily dealt with clinically and should preferably be eliminated. Neurotrophic factors have well-documented abilities to support neuron survival and stimulate neurite outgrowth, making them excellent candidates for use in repairing injured nerves. We investigated the possible beneficial effects of repairing the transected rat sciatic nerve by local application of a fibrin sealant containing nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), or acidic fibroblast growth factor (aFGF). Fibrin sealant was used in conjunction with sutures. Evaluation of motor and sensory function, autotomy, and histological parameters was carried out from 1 to 12 weeks after injury. We demonstrate that NGF cotreatment decreased the occurance of autotomy, suggesting a reduction of neuropathic pain, and improved the performance in motor and sensory tests. In addition, the number of regenerating motoneurons was significantly increased after NGF administration. GDNF increased the speed of sensory recovery, but also markedly increased autotomy, indicating an increased degree of neuropathic pain. aFGF did not alter the outcome of the motor or sensory tests. Fibrin sealant could easily be used in conjunction with sutures to deliver neurotrophic substances locally to the damaged nerve and to enhance recovery of nerve function.  相似文献   

5.
Inducible nitric oxide synthase (iNOS) may be a critical factor in the repair of injured tissues. In mice lacking iNOS we observed abnormalities in how the peripheral nerve responds to each of 3 fundamental types of injury: chronic constriction partial nerve injury (a model of neuropathic pain), nerve crush, and nerve transection. In each type of injury, mice lacking iNOS had evidence of a regenerative delay, preceded by slowing of myelinated fiber Wallerian degeneration (WD). In wild-type mice, iNOS immunoreactivity and the presence and upregulation of its mRNA were demonstrated distal to injury, but neither was observed in the knockout mice. Slowed WD was suggested by the abnormal persistence of apparent myelinated fiber profiles distal to the injury zones in mice lacking iNOS compared to wild-type controls. In mice lacking iNOS there were fewer regenerating myelinated fibers, smaller caliber regenerating fibers, and slowed reinnervation of muscle endplates distal to the injury zone. Slowed degeneration was also associated with normal initiation but delayed expression of neuropathic pain. Our findings highlight important relationships among nitric oxide, WD, neuropathic pain, and axon regeneration.  相似文献   

6.
Persisting motor function deficit after peripheral nerve injury often results from axotomized motoneuron death. Brain-derived neurotrophic factor (BDNF) and its receptor, trkB, are known to promote peripheral nerve regeneration. However, the requirement of BDNF and trkB for adult motoneuron survival after peripheral nerve injury is not established. We studied the number of surviving and regenerating motoneurons after sciatic nerve transection in wild-type and heterozygous trkB-deficient mice. The nerve was either left cut or immediately sewed up or the gap injury model was performed. The gap was provided with an autologous or cross (obtained from other genetic group) graft. Sixteen weeks after surgery, the animals were sacrificed and histological evaluations were performed. In order to study the number of regenerating motoneurons, immunofluorescent tracer was applied to the distal stump of the operated nerve. We found that in wild type mice, the decrease in motoneurons after nerve transection was markedly higher than in trkB-deficient animals, regardless of the operation procedure. Nerve transection resulted in the highest decrease in motoneuron number in wild type mice. This decrease was lower if the nerve was re-joined using a cross-graft obtained from a trkB-deficient animal. Interestingly, in trkB-deficient animals, the decrease in motoneuron count did not depend on type of operation and was similar after nerve transection, re-joining or grafting. The number of regenerating motoneurons after nerve transection and re-joining in wild type animals was lower than in trkB-deficient mice. The number of regenerating motoneurons after nerve grafting did not differ between groups. These results provide further evidence for the role of trkB receptor in spinal motoneuron survival and regeneration.  相似文献   

7.
Sciatic cryoneurolysis (SCN) is an experimental rat mononeuropathy model that produces neuropathic behavioral sequelae distinct from other neuropathy models. Following SCN, there is limited autotomy peaking in severity and incidence at 7-14 days and delayed but sustained allodynia appearing at about 21 days, with no evidence of thermal hyperalgesia. This study quantified peripheral nerve pathology at weekly intervals following SCN to determine the relationship of nerve degeneration and regeneration to the resulting abnormal behaviors. Fiber histograms based on axon diameter and grid morphometry were used to quantify the pathologic state of nerve fibers, activated phagocytic cells, vessels, and edema at the lesion site. Approximately 90% of the axons demonstrated Wallerianlike degeneration by 3 days post-SCN. At 14 days, small diameter axons significantly increased in number from earlier times following SCN (P < 0.05) but were not significantly different from normal values. At 21 days, the number of small diameter axons was significantly increased over both 14 days (P < 0.05) and normal values (P < 0.05). At 28 days, intermediate diameter axons significantly increased in number with respect to all earlier time periods (P < 0.05). These increases in regenerating fibers overlapped with the development of peak autotomy at 7-14 days and the onset of allodynia after 21 days. Autotomy scores at 7 days positively correlated with grid morphometry data of regenerating axons (p = 0.7) and activated macrophages and Schwann cells (p = 0.8) and inversely correlated with edema (p= -0.8) using Spearman's rank correlation analysis. These data suggest a macrophage and Schwann cell involvement in the sensitization of first- and second-order neurons to afferent input which leads to neuropathic behaviors. These results are discussed in the context of a hypothesis for the generation of differential neuropathic behaviors associated with the pathological events of degeneration and regeneration following the chronic constriction injury model of neuropathic pain and SNC.  相似文献   

8.
The aim of this study was to examine the effects of LY117018, a selective estrogen receptor modulator, on peripheral nerve regeneration, using a model of sciatic nerve crush injury in mice. Sciatic functional index, an index of functional recovery, was significantly higher in LY117018 treated mice throughout regeneration. Analysis of semi-thin sections revealed a significant increase in both the total number of regenerating nerve fibers at day 7, and the mean axonal area of myelinated fibers at 7, 14, and 21 days after injury, in LY117018 treated mice. Analysis of axonal transport through retrograde labeling of motor neurons showed that LY117018 increased transport, and ICI 182,780 blocked the effects of LY117018, delineating estrogen receptors as its target. Our study suggests that LY117018 may markedly accelerate peripheral nerve regeneration and functional recovery through activation of estrogen receptors.  相似文献   

9.
Impaired regeneration of bcl-2-lacking peripheral nerves   总被引:7,自引:0,他引:7  
OBJECT: The outcome of peripheral nerve damage in still not satisfactory, despite the general capacity of peripheral nervous system to regenerate. The molecular mechanisms underlying nerve regeneration are still not clear, but it is likely that apoptosis regulating genes plays a crucial role in these processes. The aim of the present study was to establish the role of the anti-apoptotic gene bcl-2 in peripheral nerve repair. MATERIAL AND METHODS: Sciatic nerves of bcl-2-deficient and wild type mice were transected, and immediately re-sutured. The regeneration was assessed functionally and morphologically throughout the 4-week follow-up. RESULTS: We found markedly worse sciatic function index outcome, as well as more significant atrophy of denervated muscles in bcl-2 knock-out animals when compared with wild-type ones. The intensity of histological regeneration features, including GAP-43-positive growth cones, Schwann cells and macrophages in the distal stump of the transected nerve, was also decreased. The number of motor and sensory neurons in the relevant cross-sections of spinal cord was similar in both groups of mice. CONCLUSION: We concluded that the bcl-2 gene plays an important role in peripheral nerve regeneration, influencing nerve injury site clearing, fiber regrowth and myelination.  相似文献   

10.
IL-1β and TNF are potential targets in the management of neuropathic pain after injury. However, the importance of the IL-1 and TNF systems for peripheral nerve regeneration and the mechanisms by which these cytokines mediate effects are to be fully elucidated. Here, we demonstrate that mRNA and protein levels of IL-1β and TNF are rapidly upregulated in the injured mouse sciatic nerve. Mice lacking both IL-1β and TNF, or both IL-1 type 1 receptor (IL-1R1) and TNF type 1 receptor (TNFR1), showed reduced nociceptive sensitivity (mechanical allodynia) compared with wild-type littermates after injury. Microinjecting recombinant IL-1β or TNF at the site of sciatic nerve injury in IL-1β- and TNF-knock-out mice restored mechanical pain thresholds back to levels observed in injured wild-type mice. Importantly, recovery of sciatic nerve function was impaired in IL-1β-, TNF-, and IL-1β/TNF-knock-out mice. Notably, the infiltration of neutrophils was almost completely prevented in the sciatic nerve distal stump of mice lacking both IL-1R1 and TNFR1. Systemic treatment of mice with an anti-Ly6G antibody to deplete neutrophils, cells that play an essential role in the genesis of neuropathic pain, did not affect recovery of neurological function and peripheral axon regeneration. Together, these results suggest that targeting specific IL-1β/TNF-dependent responses, such as neutrophil infiltration, is a better therapeutic strategy for treatment of neuropathic pain after peripheral nerve injury than complete blockage of cytokine production.  相似文献   

11.
The outcome of peripheral nerve injury is often impaired by post-traumatic neuroma developing at the injury site. Neuroma is usually accompanied by neuropathic pain, which is usually resistant to most analgesics and presents a serious clinical problem. The mechanisms underlying post-traumatic neuroma remain unclear, but they are likely associated with regeneration processes. Brain-derived neurotrophic factor (BDNF) and its receptor, trkB, are strongly implicated in axonal regeneration after injury. The aim of this work was to examine the role of trkB in post-traumatic neuroma formation. The sciatic nerve was transected in wild-type and heterozygous trkB-deficient mice. The nerve was either left cut or immediately sewn up or the gap injury model was performed. The gap was provided with an autologous or cross (obtained from another genetic group) graft. Sixteen weeks after surgery, the animals were sacrificed and histologic evaluations were performed. We found very limited or no neuroma formation in wild-type animals, regardless of the surgical procedure. In the majority of trkB-deficient mice, the post-traumatic neuroma was found at the end of the proximal stump of the transected nerve. In the gap injury model, in trkB-deficient animals receiving wild-type graft, there was no neuroma at the join site between the graft and distal stump of the nerve. In contrast, if the graft was autologous, neuroma formed at both joints. We also noticed many more mast cells accumulated at the surgery site in trkB-deficient than in wild-type animals. These results indicate the important role of BDNF receptor in post-traumatic neuroma formation.  相似文献   

12.
Neurotrophic factors have been shown to stimulate and support peripheral nerve repair. One of these factors is basic fibroblast growth factor (FGF-2), which is up-regulated after peripheral nerve injury and influences early sciatic nerve regeneration by regulating Schwann cell proliferation. Our previous study on FGF-2 deficient mice indicated that FGF-2 is important for axonal maturation and remyelination one week after sciatic nerve crush (Jungnickel, J., Claus, P., Gransalke, K., Timmer, M. and Grothe, C., 2004. Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Mol. Cell. Neurosci. 25, 444-452). However, the functional impact of these effects on sensory and motor fibers was not clear. After performing pinch test, walking track analysis and rotarod, we found faster recovery of mechanosensory but not of motor function in mutant mice. To elucidate the role of FGF-2 on structural recovery, we analyzed FGF-2 deficient mice and wild-type littermates 2 and 4 weeks after sciatic nerve crush. Two weeks after peripheral nerve injury, regenerating fibers of mutant mice showed both significantly increased axon and myelin size, but no difference in the number of myelinated and unmyelinated fibers. Molecular analysis indicated that the expression level of myelin protein zero was significantly enhanced in lesioned nerves in the absence of FGF-2. These results suggest that loss of FGF-2 could positively influence restoration of mechanosensory function by accelerating structural recovery transiently.  相似文献   

13.
Following peripheral nerve injury, cholesterol from degenerating myelin is retained locally within macrophages and subsequently reutilized by Schwann cells for synthesis of new myelin during nerve regeneration. Substantial evidence indicates this conservation and reutilization of cholesterol is accomplished via lipoprotein-mediated intercellular transport, although the identities of the lipoproteins and their receptors are unresolved. Because Schwann cells in regenerating nerve are reported to express the low-density lipoprotein (LDL) receptor (LDLR), we used the LDLR knockout mouse to examine the potential role of this receptor in cholesterol reutilization. Sciatic nerves were crushed in knockout and wild-type mice and examined 3 days to 10 weeks later. Morphometric analyses and measures of mRNA levels for myelin protein P(0), indicate that axon regeneration and myelination proceed normally in the LDLR knockout mouse. We therefore measured hydroxy-methylglutaryl-coenzyme A (HMG-CoA) reductase activity and mRNA levels to determine whether Schwann cells compensated for the absence of the LDLR by upregulating cholesterol synthesis. Unexpectedly, these measures remained at the same downregulated levels found in regenerating nerves of wild-type animals. The apparently normal nerve regeneration, coupled with the lack of any compensatory upregulation of cholesterol synthesis in the LDLR knockout mice, indicates that other lipoprotein receptors must be primarily involved in cholesterol uptake by Schwann cells.  相似文献   

14.
Even after reconstructive surgery, major functional impairments remain in the majority of patients with peripheral nerve injuries. The application of novel emerging therapeutic strategies, such as lentiviral (LV) vectors, may help to stimulate peripheral nerve regeneration at a molecular level. In the experiments described here, we examined the effect of LV vector-mediated overexpression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on regeneration of the rat peripheral nerve in a transection/repair model in vivo. We showed that LV vectors can be used to locally elevate levels of NGF and GDNF in the injured rat peripheral nerve and this has profound and differential effects on regenerating sensory and motor neurons. For sensory neurons, increased levels of NGF and GDNF do not affect the number of regenerated neurons 1 cm distal to a lesion at 4 weeks post-lesion but do cause changes in the expression of markers for different populations of nociceptive neurons. These changes are accompanied by significant alterations in the recovery of nociceptive function. For motoneurons, overexpression of GDNF causes trapping of regenerating axons, impairing both long-distance axonal outgrowth and reinnervation of target muscles, whereas NGF has no effect on these parameters. These observations show the feasibility of combining surgical repair of the transected nerve with the application of viral vectors. Furthermore, they show a difference between the regenerative responses of motor and sensory neurons to locally increased levels of NGF and GDNF.  相似文献   

15.
《中国神经再生研究》2016,(12):2012-2017
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.  相似文献   

16.
In injured adult neurons, the process of axonal regrowth and reestablishment of the neuronal function have to be activated. We assessed in this study whether RhoA, a key regulator of neurite elongation, is activated after injury to the peripheral nervous system. RhoA is activated in motoneurons but not in Schwann cells after mouse sciatic nerve injury. To examine whether the activation of RhoA and its effector, Rho-kinase, retards axon regeneration of injured motoneurons, we employed a Rho-kinase inhibitor, fasudil. Amplitudes of distally evoked compound muscle action potentials are increased significantly faster after axonal injury in mice treated with fasudil compared with controls. Histological analysis shows that fasudil treatment increases the number of regenerating axons with large diameter, suggesting that axon maturation is facilitated by Rho-kinase inhibition. In addition, fasudil does not suppress the myelination of regenerating axons. These findings suggest that RhoA/Rho-kinase may be a practical molecular target to enhance axonal regeneration in human peripheral neuropathies.  相似文献   

17.
L1 is an adhesion molecule favorably influencing the functional and anatomical recoveries after central nervous system (CNS) injuries. Its roles in peripheral nervous system (PNS) regeneration are less well understood. Studies using knockout mice have surprisingly revealed that L1 has a negative impact on functional nerve regeneration by inhibiting Schwann cell proliferation. To further elucidate the roles of L1 in PNS regeneration, here we used a novel transgenic mouse overexpressing L1 in neurons, but not in PNS or CNS glial cells, under the control of a neuron-specific Thy-1 promoter. Without nerve injury, the transgene expression, as compared to wild-type mice, had no effect on femoral nerve function, numbers of quadriceps motoneurons and myelinated axons in the femoral nerve but resulted in slightly reduced myelination in the sensory saphenous nerve and increased neurofilament density in myelinated axons of the quadriceps motor nerve branch. After femoral nerve injury, L1 overexpression had no impact on the time course and degree of functional recovery. Unaffected were also numbers of regenerated quadriceps motoneurons, precision of muscle reinnervation, axon numbers and internodal lengths in the regenerated nerves. Despite the lack of functional effects, myelination in the motor and sensory femoral nerve branches was significantly improved and loss of perisomatic inhibitory terminals on motoneurons was attenuated in the transgenic mice. Our results indicate that L1 is a regulator of myelination in the injured PNS and warrant studies aiming to improve function in demyelinating PNS and CNS disorders using exogenous L1.  相似文献   

18.
Functional recovery after large excision of dorsal roots is absent because of both the limited regeneration capacity of the transected root, and the inability of regenerating sensory fibers to traverse the dorsal root entry zone. In this study, bioresorbable guidance conduits were used to repair 6-mm dorsal root lesion gaps in rats, while neurotrophin-encoding adenoviruses were used to elicit regeneration into the spinal cord. Polyester conduits with or without microfilament bundles were implanted between the transected ends of lumbar dorsal roots. Four weeks later, adenoviruses encoding NGF or GFP were injected into the spinal cord along the entry zone of the damaged dorsal roots. Eight weeks after injury, nerve regeneration was observed through both types of implants, but those containing microfilaments supported more robust regeneration of calcitonin gene-related peptide (CGRP)-positive nociceptive axons. NGF overexpression induced extensive regeneration of CGRP(+) fibers into the spinal cord from implants showing nerve repair. Animals that received conduits containing microfilaments combined with spinal NGF virus injections showed the greatest recovery in nociceptive function, approaching a normal level by 7-8 weeks. This recovery was reversed by recutting the dorsal root through the centre of the conduit, demonstrating that regeneration through the implant, and not sprouting of intact spinal fibers, restored sensory function. This study demonstrates that a combination of PNS guidance conduits and CNS neurotrophin therapy can promote regeneration and restoration of sensory function after severe dorsal root injury.  相似文献   

19.
Chu TH  Wu WT 《Neuroreport》2006,17(10):969-973
Neuronal survival and death-related effects of nitric oxide synthase are widely studied, yet its potential involvement in regeneration remains largely unexplored. In the present study, the regenerative role of nitric oxide synthase in injured motoneurons was investigated. A ventral root was avulsed and a piece of peripheral nerve was implanted into the spinal cord. Results showed that nitric oxide synthase inhibitor reduced the number of regenerating motoneurons to half compared with sham-operated control at 2 weeks and 4 weeks after injury, but the rate of axonal regeneration was not affected. Our study adds a new line of evidence that expression of nitric oxide synthase is beneficial to the axonal regeneration of the injured spinal motoneurons.  相似文献   

20.
Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号