首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal β-amyloid (Aβ) deposits in the thalamus have been reported after cerebral cortical infarction. In this study, we investigated the association of Aβ deposits, with the secondary thalamic damage after focal cortical infarction in rats. Thirty-six stroke-prone renovascular hypertensive rats were subjected to distal middle cerebral artery occlusion (MCAO) and then randomly divided into MCAO, vehicle, and N-[N-(3,5-difluorophenacetyl)--alanyl]-S-phenylglycine t-butyl ester (DAPT) groups and 12 sham-operated rats as control. The DAPT was administered orally at 72 hours after MCAO. Seven days after MCAO, sensory function, neuron loss, and glial activation and proliferation were evaluated using adhesive removal test, Nissl staining, and immunostaining, respectively. Thalamic Aβ accumulation was evaluated using immunostaining and enzyme-linked immunosorbent assay (ELISA). Compared with vehicle group, the ipsilateral thalamic Aβ, neuronal loss, glial activation and proliferation, and the mean time to remove the stimulus from right forepaw significantly decreased in DAPT group. The mean time to remove the stimulus from the right forepaw and thalamic Aβ burden were both negatively correlated with the number of thalamic neurons. These findings suggest that Aβ deposits are associated with the secondary thalamic damage. Reduction of thalamic Aβ by γ-secretase inhibitor may attenuate the secondary damage and improve sensory function after cerebral cortical infarction.  相似文献   

2.
Membrane-associated oxidative stress has been implicated in the synaptic dysfunction and neuronal degeneration that occurs in Alzheimer's disease (AD), but the underlying mechanisms are unknown. Enzymes of the plasma membrane redox system (PMRS) provide electrons for energy metabolism and recycling of antioxidants. Here, we show that activities of several PMRS enzymes are selectively decreased in plasma membranes from the hippocampus and cerebral cortex of 3xTgAD mice, an animal model of AD. Our results that indicate the decreased PMRS enzyme activities are associated with decreased levels of coenzyme Q10 and increased levels of oxidative stress markers. Neurons overexpressing the PMRS enzymes (NQO1 or cytochrome b5 reductase) exhibit increased resistance to amyloid β-peptide (Aβ). If and to what extent Aβ is the cause of the impaired PMRS enzymes in the 3xTgAD mice is unknown. Because these mice also express mutant tau and presenilin-1, it is possible that one or more of the PMRS could be adversely affected by these mutations. Nevertheless, the results of our cell culture studies clearly show that exposure of neurons to Aβ1–42 is sufficient to impair PMRS enzymes. The impairment of the PMRS in an animal model of AD, and the ability of PMRS enzyme activities to protect neurons against Aβ-toxicity, suggest enhancement PMRS function as a novel approach for protecting neurons against oxidative damage in AD and related disorders.  相似文献   

3.
3′-Daidzein sulfonate sodium(DSS) is a new synthetic water-soluble compound derived from daidzein,a soya isoflavone that plays regulatory roles in neurobiology.In this study,we hypothesized that the regulatory role of DSS in neurobiology exhibits therapeutic effects on hippocampal damage and memory impairment.To validate this hypothesis,we established rat models of chronic cerebral hypoperfusion(CCH) by the permanent occlusion of the common carotid arteries using the two-vessel occlusion method.Three weeks after modeling,rat models were intragastrically administered 0.1,0.2,and 0.4 mg/kg DSS,once a day,for 5 successive weeks.The Morris water maze test was performed to investigate CCH-induced learning and memory deficits.TUNEL assay was used to analyze apoptosis in the hippocampal CA1,CA3 regions and dentate gyrus.Hematoxylin-eosin staining was performed to observe the morphology of neurons in the hippocampal CA1,CA3 regions and dentate gyrus.Western blot analysis was performed to investigate the phosphorylation of PKA,ERK1/2 and CREB in the hippocampal PKA/ERK1/2/CREB signaling pathway.Results showed that DSS treatment greatly improved the learning and memory deficits of rats with CCH,reduced apoptosis of neurons in the hippocampal CA1,CA3 regions and dentate gyrus,and increased the phosphorylation of PKA,ERK1/2,and CREB in the hippocampus.These findings suggest that DSS protects against CCH-induced memory impairment and hippocampal damage possibly through activating the PKA/ERK1/2/CREB signaling pathway.  相似文献   

4.
《Alzheimer's & dementia》2013,9(6):699-705
ObjectiveApolipoprotein E (APOE) ε2 carriers may be protected from dementia because of reduced levels of cortical β-amyloid. In the oldest-old, however, APOE ε2 carriers have high β-amyloid plaque scores and preserved cognition. We compared different measures of β-amyloid pathology across APOE genotypes in the oldest-old, and their relationship with dementia.MethodsThe study included 96 participants from The 90+ Study. Using all information, dementia diagnoses were made. Neuropathological examination included staging for amyloid plaques and β-amyloid cortical percent area stained by NAB228 antibody.ResultsBoth APOE ε2 and APOE ε4 carriers had high Consortium to Establish a Registry for Alzheimer’s Disease plaque scores. However, APOE ε2 carriers had low cortical β-amyloid percent areas. β-amyloid percent area was associated with dementia across APOE genotypes.ConclusionsLower levels of percent area in APOE ε2 carriers may reflect lower total β-amyloid and may contribute to APOE ε2 carriers’ decreased risk of dementia, despite high β-amyloid plaque scores. The relationship between β-amyloid plaques and dementia in the oldest-old may vary by APOE genotype.  相似文献   

5.
Patients with Parkinson’s disease (PD) present with eye movement disturbances that accompany the cardinal motor symptoms. Previous studies have consistently found evidence that large-scale functional networks are critically involved in eye movement control. We challenged the hypothesis that altered eye movement control in patients with PD is closely related to alterations of whole-brain functional connectivity in association with the neurodegenerative process. Saccadic and pursuit eye movements by video-oculography and ‘resting-state’ functional MRI (3 Tesla) were recorded from 53 subjects, i.e. 31 patients with PD and 22 matched healthy controls. Video-oculographically, a broad spectrum of eye movement impairments was demonstrated in PD patients vs. controls, including interrupted smooth pursuit, hypometric saccades, and a high distractibility in anti-saccades. Significant correlations between altered oculomotor parameters and functional connectivity measures were observed, i.e. the worse the oculomotor performance was, the more the regional functional connectivity in cortical, limbic, thalamic, cerebellar, and brainstem areas was decreased. Remarkably, decreased connectivity between major nodes of the default mode network was tightly correlated with the prevalence of saccadic intrusions as a measure for distractability. In conclusion, dysfunctional eye movement control in PD seems to be primarily associated with (cortical) executive deficits, rather than being related to the ponto-cerebellar circuits or the oculomotor brainstem nuclei. Worsened eye movement performance together with the potential pathophysiological substrate of decreased intrinsic functional connectivity in predominantly oculomotor-associated cerebral functional networks may constitute a behavioral marker in PD.  相似文献   

6.
7.
This study investigated the effects of 18β-glycyrrhetinic acid (GA) on neuronal damage in brain tissue caused by global cerebral ischemia/reperfusion (I/R) in C57BL/J6 mice. All subjects (n = 40) were equally divided into four groups: (1) sham-operated (SH), (2) I/R, (3) GA, and (4) GA+I/R. The SH group was used as a control. In the I/R group, the bilateral carotid arteries were clipped for 15 min, and the mice were treated with the vehicle for 10 days. In the GA group, mice were given GA (100 mg/kg) for 10 days following a median incision without carotid occlusion. In the GA+I/R group, the I/R model was applied to the mice exactly as in the I/R group, and they were then treated with the same dose of GA for 10 days. Cerebral I/R significantly induced oxidative stress via an increase in lipid peroxidaitons and a decrease in elements of the antioxidant defense systems. However, GA treatment was protective against the oxidative effects of I/R by inducing significant increases in antioxidant defense systems and a significant decrease of lipid peroxidations. Additionally, cerebral I/R increased the incidence of histopathological damage and apoptosis in brain tissue, but these neurodegenerative effects were eliminated by GA treatment. Therefore, the current study demonstrated that GA treatment effectively prevents oxidative and histological damage in the brain caused by global I/R. In this context, GA may be useful for the attenuation of the negative effects of global cerebral I/R and, in the future, it may be a viable and safe alternative treatment for ischemic stroke in humans.  相似文献   

8.
Proteoglycans are important in the pathogenesis of senile dementia of Alzheimer type (SDAT) by participating in amyloidogenesis. Knowledge about specific proteoglycan subtypes in SDAT may be of therapeutic advantage. In this study, we examined proteoglycan constituents of SDAT brains with reference to hyaluronic acid, heparan sulfate (HS), dermatan sulfate and chondroitin sulfate subtypes. Total proteoglycans showed a 1.6-fold increase in the hippocampus and 4.3-fold increase in the gyrus frontalis superior compared to non-demented elderly subjects. The HS subtype showed a 9.3-fold increase in hippocampus and a 6.6-fold increase in gyrus frontalis superior. Immunohistochemical studies of senile plaques revealed the expression of heparan sulfate proteoglycan (HSPG) in a portion of the core of typical plaques. β-amyloid expression was positive in senile plaques and the degenerated neuronal processes and capillary basement membrane, but was negative in endothelial cells. Microglial cells adjacent to senile plaques were positive for HLA-DR expression, and astroglial cells positive for glial fibrillary acidic protein were scattered around the microglial cells. Immunoelectron microscopic examination showed an electron-dense reaction for HSPG in the thickened basement membrane adjacent to the endothelial cells of capillary vessels, but not inside the endothelial cells. These findings suggest that a markedly increased HSPG in SDAT brains is most likely caused by HSPG from the blood capillary basement membrane and that the degenerated processes around senile plaques may arise from microglial or astroglial cells.  相似文献   

9.
10.
ABSTRACT

Objective: Postoperative neurocognitive disease (PNCD) in the aged is a major clinical problem with unclear mechanisms. This study was designed to explore the mechanisms for ulinastatin (UTI) to attenuate isoflurane-induced cognitive decline in Fischer-344 rats.

Methods: The rats were divided into four groups: Control (0.9% saline only), Isoflurane (exposure to 1.2% isoflurane), Isoflurane-plus-UTI (exposure to 1.2% isoflurane followed by 100,000 U/kg UTI injection i.v.) and UTI-plus-isoflurane (i.v. of 100,000 U/kg UTI followed by 1.2% isoflurane exposure). After respective tests, the concentrations of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the brain were determined by ELISA the expression of β-amyloid peptide (Aβ) and cleaved caspase-3 were measured by Western blot. Ratio of apoptotic cells after Barnes maze challenge was assessed by TUNEL assay.

Results: In both Barnes Maze training and challenge, results indicated isoflurane-impaired learning capacity, while pre-and post-treatment with UTI could attenuate this phenomenon. The ratio of apoptotic cells and the expression of cleaved caspase-3 were increased after isoflurane exposure, indicating that isoflurane could induce neuronal apoptosis, while both pre- and post-treatment with UTI could diminish these effects. Moreover, UTI inhibited the expression of TNF-α, IL-1β and Aβ induced by isoflurane in rat brain harvested at 16 h after isoflurane exposure.

Conclusion: These results suggest that UTI inhibits neuronal apoptosis in rat brain by attenuating increased expression of Aβ42 and inflammatory cytokines, which may contribute to its alleviation of isoflurane-induced cognitive dysfunction in rats. Moreover, UTI pre-treatment before isoflurane exposure showed more effective than post-treatment.  相似文献   

11.
12.
The apolipoprotein E epsilon4 allele (APOE, gene; apoE, protein) is widely accepted as a risk factor for Alzheimer's disease (AD). Our previous studies found that APOEepsilon4 promotes AD pathogenesis by fostering the early deposition of the amyloidogenic peptide Abeta in the aging brain. Recent reports suggest that polymorphisms in the upstream promoter region of APOE differentially affect the production of apoE and also may have an important influence on the probability of developing AD. In this study, we asked whether APOE promoter -491 (A/T) variants interact with APOE polymorphisms to modulate the degree of beta-amyloid- and tau-related pathology in the medial temporal lobe of the non-demented elderly. Our results confirm that APOEepsilon4 is associated with increased formation of senile plaques, cerebrovascular amyloid, and neurofibrillary tangles in the medial temporal lobe. We also found that homozygosity for A at position -491 of the APOE promoter (-491AA) correlates with increased Abeta17-24 and Abeta42 deposition in APOEepsilon4-positive cases, but not in cases lacking the epsilon4 allele. In comparison, Abeta burden is significantly less in epsilon4 carriers with the -491AT and -491TT promoter allelotypes. There was no effect of -491 polymorphisms on Abeta40 deposition (which is relatively sparse in the non-demented elderly), on the number of activated microglia, or on the amount of neurofibrillary tangles. We conclude that the amyloidogenic effects of apoE4 are exacerbated by polymorphisms in the APOE promoter that enhance apoE production.  相似文献   

13.
Disease-modifying treatments for Alzheimer’s disease (AD) may require implementation during early stages of β-amyloid accumulation, well before patients have objective cognitive decline. In this study we aimed to assess the clinical value of subjective cognitive impairment (SCI) by examining the cross-sectional relationship between β-amyloid load and SCI. Cerebral β-amyloid and SCI was assessed in a cohort of 112 cognitively normal subjects. Subjective cognition was evaluated using specific questions on memory and cognition and the MAC-Q. Participants had cerebral β-amyloid load measured with 18F–Florbetaben Positron Emission Tomography (PET). No associations were found between measures of subjective memory impairment and cerebral β-amyloid. However, by self-reported confusion was predictive of a higher global β-amyloid burden (p = 0.002), after controlling for confounders. Regional analysis revealed significant associations of confusion with β-amyloid in the prefrontal region (p = 0.004), posterior cingulate and precuneus cortices (p = 0.004) and the lateral temporal lobes (p = 0.001) after controlling for confounders. An in vivo biomarker for AD pathology was associated with SCI by self-reported confusion on cross-sectional analysis. Whilst there has been a large body of research on SMC, our results indicate more research is needed to explore symptoms of confusion.  相似文献   

14.
Recent epidemiological and experimental studies have renewed interest in the hypothesis that the environment has a role in the pathogenesis of Parkinson's disease (PD). Epidemiological studies have identified protective associations (eg, smoking) as well as adverse risk factors (eg, pesticide exposure) for PD. The concordance rate of PD in pairs of dizygotic twins is similar to that in pairs of monozygotic twins, supporting a role of non-genetic risk factors. New models of selective nigrostriatal damage--such as neurotoxicity induced by rotenone or paraquat--have emphasised that environmental agents may contribute to the neurodegenerative process in PD. Toxins interact, in vitro and in vivo, with alpha-synuclein, an endogenous protein that is implicated in pathology of PD. Similarities between clinical and experimental findings, such as the role of pesticide exposure as a potential environmental risk factor, highlight the importance of a multidisciplinary approach to the aetiology of PD.  相似文献   

15.
Histochemical analysis of Alzheimer disease (AD) brain tissues indicates that butyrylcholinesterase (BuChE) is present in β-amyloid (Aβ) plaques. The role of BuChE in AD pathology is unknown, but an animal model developing similar BuChE-associated Aβ plaques could provide insights. The APPSWE/PSEN1dE9 transgenic mouse (ADTg), which develops Aβ plaques, was examined to determine if BuChE associates with these plaques, as in AD. We found that in mature ADTg mice, BuChE activity associated with Aβ plaques. The Aβ-, thioflavin-S- and BuChE-positive plaques mainly accumulated in the olfactory structures, cerebral cortex, hippocampal formation, amygdala, and cerebellum. No plaques were stained for acetylcholinesterase activity. The distribution and abundance of plaque staining in ADTg closely resembled many aspects of plaque staining in AD. Butyrylcholinesterase staining consistently showed fewer plaques than were detected with Aβ immunostaining but a greater number of plaques than were visualized with thioflavin-S. Double-labeling experiments demonstrated that all BuChE-positive plaques were Aβ positive, whereas only some BuChE-positive plaques were thioflavin-S positive. These observations suggest that BuChE is associated with a subpopulation of Aβ plaques and may play a role in AD plaque maturation. A further study of this animal model could clarify the role of BuChE in AD pathology.  相似文献   

16.
Summary. In the present study we found that chronic infusion of β-amyloid fragment (25–35) at nanomolar concentration into rat cerebral ventricle impairs learning and memory. At a concentration of 3 nmol/day but not 0.3 nmol/day, β-amyloid significantly reduced the spontaneous alternation behavior and the memory performance in the water maze and multiple passive avoidance tests. A significant increase in anxiety was also found in the animals infused with 3 nmol/day β-amyloid fragment. Memory deficits and the increased emotionality were correlated with a decreased nicotine-evoked acetylcholine release from the frontal cortex/hippocampus, as assessed by microdialysis, in freely moving rats. The amyloid fragment infused either at pico- or nanomolar concentrations reduced the affinity of [3H] phorbol dibutyrate binding, an index of activated protein kinase C (PKC), and increased the total number of binding sites in the hippocampal particulate fraction. Our results suggest that the amnesic and anxiogenic effects of chronic infusion of β-amyloid (25–35) are related to the decreased acetylcholine release and reduced PKC activation. Received February 14, 2001; accepted March 13, 2001  相似文献   

17.
Alzheimer disease (AD) is the most common form of dementia in the elderly, and the neuro-pathological hallmarks of AD include neurofibrillary tangles (NFT), and deposition of β-amyloid (Aβ) in extracellular plaques. In addition, chronic inflammation due to recruitment of activated glial cells to amyloid plaques are an invariant component in AD, and several studies have reported that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may provide a measure of protection against AD. In this report we have investigated whether phosphoinositide 3-kinase γ (PI3Kγ), which is important in inflammatory cell migration, plays a critical role in the neuro-inflammation, synaptic dysfunction, and cognitive deficits induced by intracerebroventricular injection of Aβ1–40 in mice. We found that the selective inhibitor of PI3Kγ, AS605240, was able to attenuate the Aβ1–40-induced accumulation of activated astrocytes and microglia in the hippocampus, and decrease immuno-staining for p-Akt and cyclooxygenase-2 (COX-2). Interestingly, Aβ1–40 activated macrophages treated with AS605240 or another PI3Kγ inhibitor, AS252424, displayed impaired chemotaxis in vitro, but their expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was unaffected. Finally, AS605240 prevented Aβ1–40-induced cognitive deficits and synaptic dysfunction, but failed to modify scopolamine-induced amnesia. Our data suggests that inhibition of PI3Kγ may represent a novel therapeutic target for treating AD patients.  相似文献   

18.
19.
Retinal glial (Müller) cells are involved in a wide range of developmental mechanisms, including axon guidance and angiogenesis. This study was undertaken to explore whether Netrin‐4, an axonal guidance molecule, is expressed by Müller cells and promotes angiogenesis‐related activities. Netrin‐4 was found through all retinal layers, and its expression was demonstrated in Müller cells, retinal pigment epithelium cells and bovine retinal endothelial cells (BRECs). Co‐localization of Netrin‐4 with Müller cell‐specific molecules [cellular retinaldehyde‐binding protein (cRALBP), vimentin] was observed in the ganglion cell layer, nerve fiber layer, and at the outer limiting membrane. Under hypoxic conditions, the release of Netrin‐4 from Müller cells was increased, with mRNA levels upregulated in a hypoxia‐inducible factor‐1‐dependent manner and dependent on the concomitantly induced release of vascular endothelial growth factor. These findings were consistent with an intensified immunofluorescence of Netrin‐4 labeling in the postischemic retinas after ischemia‐reperfusion. Netrin‐4 stimulated BRECs to increase phosphorylation of the mitogen‐activated protein (MAP) kinases, extracellular signal‐regulated kinase (ERK)‐1/‐2, and p38, in a dose‐dependent manner. Synthetic inhibitors of the MAP kinases were able to suppress Netrin‐4‐induced migration and proliferation of BRECs suggesting that both MAP kinases are differentially involved in Netrin‐4‐induced angiogenesis. Two receptors for Netrins, i.e., deleted in colorectal cancer (DCC) and uncoordinated‐5‐homolog 1 (Unc5H1), were detected in BRECs. DCC is at least partially required for Netrin‐4‐induced activation of ERK‐1/‐2. These data suggest that Müller glial cells contribute to, and may modulate, retinal Netrin‐4 levels. This may be a novel pathway of Müller cell‐mediated control of retinal angiogenesis, particularly under hypoxic/ischemic conditions when the cells upregulate Netrin‐4 expression. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Peroxisome proliferator-activated receptors (PPARs) are important members of the nuclear receptor superfamily. Ligands of these nuclear receptors (PPARα, β/δ and γ) belong to a wide range of lipophilic substances. In spite of the proven neuroprotective efficacy of PPARβ/δ in models of neurological diseases, the biology of PPARβ/δ in the brain has been much less investigated than that of PPARα and PPARγ. In the present study, we test the hypothesis that neuroprotection induced by PPARβ/δ could rely on the regulation of ceramide metabolism. We found that preincubation of neural cells with the PPARβ/δ agonist L-165041 exerts significant protection against ceramide-induced cell death. Most importantly, L-165041 protects against ceramide-induced cell death not only before the insult, but also after the onset of the insult. To identify the mechanism of protection, we show that L-165041 upregulates ceramide kinase (CerK) expression levels in neural cells. Consistent with that, we detected that pharmacological inhibition of CerK reduces the protective effects of L-165041. To further decipher the mechanism of protection, gene knockdown in astrocytes was studied. Knockdown of PPARβ/δ and CerK in astrocytes was used to verify that the protective effects of L-165041 are CerK- and PPARβ/δ-dependent. We demonstrate that in CerK- or PPARβ/δ-knockdown astrocytes, addition of L-165041 has no protective effect. Thus, we conclude that PPARβ/δ protects neural cells against ceramide-induced cell death via induction and activation of CerK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号