首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
OBJECTIVE: To compare the cerebral activation pattern during writing of patients with writing tremor with healthy controls using functional MRI METHODS: Three patients with writing tremor and 10 healthy controls were examined using a 1.5 Tesla scanner. All subjects performed a paradigm of alternating 30 second periods of rest or writing. For functional imaging 60 EPI multislice data sets were acquired. All images were analyzed using SPM96 software. Data were analyzed for the group of patients with writing tremor and compared with those of the control group. RESULTS: Both patients with writing tremor and controls showed a significant activation of the contralateral primary sensorimotor cortex, SMA, and area 44. By contrast, motor cortex activation in writing tremor also included the contralateral premotor area (area 6) and ipsilateral prefrontal area (inferior frontal gyrus; areas 10, 44, and 47). Only patients with writing tremor showed a bilateral activation of the parietal lobule (area 40) with a more pronounced activation on the contralateral side. Furthermore, there was a bilateral activation of the cerebellum with a more pronounced area of activation on the ipsilateral side. CONCLUSIONS: Brain areas activated in writing tremor included activation patterns otherwise typical for both essential tremor and writer's cramp. Therefore a distinct category for writing tremor integrating hallmarks of essential tremor and writer's cramp is proposed.  相似文献   

2.
Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere. Received: 24 November 2000, Received in revised form: 8 March 2001, Accepted: 10 April 2001  相似文献   

3.
The pathophysiology of idiopathic focal hand dystonia (writer's cramp) is characterized by deficient inhibitory basal ganglia function and altered cortical sensorimotor processing. To explore if this is already a primary finding in dystonia for internal movement simulation independent of dystonic motor output or abnormal sensory input, we investigated the neural correlates of movement imagination and observation in patients with writer's cramp. Event-related fMRI was applied during kinesthetic motor imagery of drawing simple geometric figures (imagination task) and passively observing videos of hands drawing identical figures (observation task). Compared with healthy controls, patients with writer's cramp showed deficient activation of the left primary sensorimotor cortex, mesial and left dorsal premotor cortex, bilateral putamen, and bilateral thalamus during motor imagery. No significant signal differences between both groups were found during the observation task. We conclude that internal movement simulation and planning as tested during imagination of hand movements appear to be dysfunctional in patients with writer's cramp, whereas visual signal processing and observation-induced activation are unaffected. Deficient basal ganglia-premotor activation could be a correlate of impaired basal ganglia inhibition and focusing during the selection of motor programs in dystonia. This finding seems to be an intrinsic deficit, as it is found during motor imagery in the absence of dystonic symptoms. ? 2012 Movement Disorder Society.  相似文献   

4.
We have studied regional cerebral blood flow changes in 6 patients after their recovery from a first hemiplegic stroke. All had a single well-defined hemispheric lesion and at least a brachial monoparesis that subsequently recovered. Each patient had 6 measurements of cerebral blood flow by positron tomography with 2 scans at rest, 2 during movement of fingers of the recovered hand, and 2 during movement of fingers of the normal hand. When the normal fingers were moved, regional cerebral blood flow increased significantly in contralateral primary sensorimotor cortex and in the ipsilateral cerebellar hemisphere. When the fingers of the recovered hand were moved, significant regional cerebral blood flow increases were observed in both contralateral and ipsilateral primary sensorimotor cortex and in both cerebellar hemispheres. Other regions, namely, insula, inferior parietal, and premotor cortex, were also bilaterally activated with movement of the recovered hand. We have also demonstrated, by using a new technique of image analysis, different functional connections between the thalamic nuclei and specific cortical and cerebellar regions during these movements. Our results suggest that ipsilateral motor pathways may play a role in the recovery of motor function after ischemic stroke.  相似文献   

5.
We used positron emission tomography (PET) to study organizational changes in the functional anatomy of the brain in 10 patients following recovery from striatocapsular motor strokes. Comparisons of regional cerebral blood flow maps at rest between the patients and 10 normal subjects revealed significantly lower regional cerebral blood flow in the basal ganglia, thalamus, sensorimotor, insular, and dorsolateral prefrontal cortices, in the brainstem, and in the ipsilateral cerebellum in patients, contralateral to the side of the recovered hand. These deficits reflect the distribution of dysfunction caused by the ischemic lesion. Regional cerebral blood flow was significantly increased in the contralateral posterior cingulate and premotor cortices, and in the caudate nucleus ipsilateral to the recovered hand. During the performance of a motor task by the recovered hand, patients activated the contralateral cortical motor areas and ipsilateral cerebellum to the same extent as did normal subjects. However, activation was greater than in normal subjects in both insulae; in the inferior parietal (area 40), prefrontal and anterior cingulate cortices; in the ipsilateral premotor cortex and basal ganglia; and in the contralateral cerebellum. The pattern of cortical activation was also abnormal when the unaffected hand, contralateral to the hemiplegia, performed the task. We showed that bilateral activation of motor pathways and the recruitment of additional sensorimotor areas and of other specific cortical areas are associated with recovery from motor stroke due to striatocapsular infarction. Activation of anterior and posterior cingulate and prefrontal cortices suggests that selective attentional and intentional mechanisms may be important in the recovery process. Our findings suggest that there is considerable scope for functional plasticity in the adult human cerebral cortex.  相似文献   

6.
We used serial positron emission tomography (PET) to study the evolution of functional brain activity within 12 weeks after a first subcortical stroke. Six hemiplegic stroke patients and three normal subjects were scanned twice (PET 1 and PET 2) by using passive elbow movements as an activation paradigm. Increases of regional cerebral blood flow comparing passive movements and rest and differences of regional cerebral blood flow between PET 1 and PET 2 in patients and normal subjects were assessed by using statistical parametric mapping. In controls, activation was found in the contralateral sensorimotor cortex, supplementary motor area, and bilaterally in the inferior parietal cortex with no differences between PET 1 and PET 2. In stroke patients, at PET 1, activation was observed in the bilateral inferior parietal cortex, contralateral sensorimotor cortex, and ipsilateral dorsolateral prefrontal cortex, supplementary motor area, and cingulate cortex. At PET 2, significant increases of regional cerebral blood flow were found in the contralateral sensorimotor cortex and bilateral inferior parietal cortex. A region that was activated at PET 2 only was found in the ipsilateral premotor area. Recovery from hemiplegia is accompanied by changes of brain activation in sensory and motor systems. These alterations of cerebral activity may be critical for the restoration of motor function.  相似文献   

7.
Focal transcranial magnetic stimulation (TMS) of the motor cortex was used to study excitatory and inhibitory stimulation effects in 25 patients with writer's cramp and 25 healthy volunteers. We investigated excitatory and inhibitory corticospinally mediated motor effects in muscles contralateral to the stimulation side as well as interhemispheric inhibition of tonic motor activity in muscles ipsilateral to stimulation. Motor evoked potentials (MEPs) were recorded from both first dorsal interosseus muscles. Motor thresholds at rest and amplitudes and latencies of MEPs obtained during maximal contraction were always bilaterally normal. The duration of postexcitatory inhibition was significantly shortened (168±55 vs. 198±39 ms in normal subjects, P=0.001) and the duration of interhemispheric inhibition prolonged (30.3±6.6 vs. 26±3.9 ms in normal subjects, P < 0.001). Both observations would be compatible with a decreased inhibition of corticospinal and transcallosal outputs of the motor cortex. The results were not influenced by fatigue effects. Abnormal motor cortex inhibition seems to be a generalized phenomenon in writer's cramp since it was detected in both hemispheres and during a simple isometric motor task which did not evoke dystonic symptoms. Received: 28 February 2000 / Received in revised form: 29 June 2000 / Accepted: 1 August 2000  相似文献   

8.
BACKGROUND AND PURPOSE: Cortical reorganization of motor systems has been found in recovered stroke patients. Reorganization in nonrecovered hemiplegic stroke patients early after stroke, however, is less well described. We used positron emission tomography to study the functional reorganization of motor and sensory systems in hemiplegic stroke patients before motor recovery. METHODS: Regional cerebral blood flow (rCBF) was measured in 6 hemiplegic stroke patients with a single, subcortical infarct and 3 normal subjects with the [(15)O]H(2)O injection technique. Brain activation was achieved by passive elbow movements driven by a torque motor. Increases of rCBF comparing passive movements and rest were assessed with statistical parametric mapping. Significant differences were defined at P<0.01. RESULTS: In normal subjects, significant increases of rCBF were found in the contralateral sensorimotor cortex, supplementary motor area, cingulate cortex, and bilaterally in the inferior parietal cortex. In stroke patients, significant activation was observed bilaterally in the inferior parietal cortex and in the contralateral sensorimotor cortex, ipsilateral prefrontal cortex, supplementary motor area, and cingulate cortex. Significantly larger increases of rCBF in patients compared with normal subjects were found bilaterally in the sensorimotor cortex, stronger in the ipsilateral, unaffected hemisphere, and in both parietal lobes, including the ipsilateral precuneus. CONCLUSIONS: Passive movements in hemiplegic stroke patients before clinical recovery elicit some of the brain activation patterns that have been described during active movements after substantial motor recovery. Changes of cerebral activation in sensory and motor systems occur early after stroke and may be a first step toward restoration of motor function after stroke.  相似文献   

9.
Writer's cramp is a task‐specific form of dystonia with symptoms characterized by abnormal movements and postures of the hand and arm evident only during writing. Its pathophysiology has been related to faulty sensorimotor integration, abnormal sensory processing, and impaired motor planning. Its symptoms might appear when the computational load of writing pushes a tonically altered circuit outside its operational range. Using resting‐state fMRI, we tested whether writer's cramp patients have altered intrinsic functional connectivity in the premotor–parietal circuit. Sixteen patients with right‐sided writer's cramp and 19 control subjects were studied. We show that writer's cramp patients have reduced connectivity between the superior parietal lobule and a dorsal precentral region that controls writing movements. This difference between patients and controls occurred in the absence of writing and only in the hemisphere contralateral to the affected hand. This finding adds a novel element to the pathophysiological substrate for writer's cramp, namely, task‐independent alterations within a writing‐related circuit. © 2012 Movement Disorder Society  相似文献   

10.
The functional nature of cerebellar diaschisis   总被引:4,自引:0,他引:4  
We report a patient who presented with transient clumsiness of his right hand due to a small hemorrhage in the left globus pallidus. Ten days later, positron emission tomography performed at rest showed decreased oxygen metabolism and blood flow at the site of the anatomic lesion and in remote areas such as the ipsilateral frontotemporoparietal cortex and the contralateral cerebellar hemisphere. Cerebellar hypometabolism has been ascribed to functional disconnection of the contralateral hemisphere from the cerebral cortex and has been termed crossed cerebellar diaschisis. One month later, positron emission tomography performed during unilateral motor activation (finger opposition) showed increased blood flow in the sensorimotor and supplementary motor areas contralateral to the hand engaged in the motor task. An at-rest study at this time showed resolution of the crossed cerebellar diaschisis observed acutely, but cerebellar asymmetry was demonstrated during performance of the motor task with the normal as well as with the previously paretic hand. Our activation study demonstrated cerebellar asymmetry in the chronic phase during a motor task, even though resting cerebellar blood flow was symmetrical. This observation reveals the dynamic, functional nature of crossed cerebellar diaschisis and may partially explain the lack of any clinical counterpart in functional studies of the cerebellum performed with the patient at rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号