首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ma K  Fox L  Shi G  Shen J  Liu Q  Pappas JD  Cheng J  Qu T 《Neurological research》2011,33(10):1083-1093
Under appropriate culture conditions, bone marrow (BM)-derived mesenchymal stem cells are capable of differentiating into diverse cell types unrelated to their phenotypical embryonic origin, including neural cells. Here, we report the successful generation of neural stem cell (NSC)-like cells from BM-derived human mesenchymal stem cells (hMSCs). Initially, hMSCs were cultivated in a conditioned medium of human neural stem cells. In this culture system, hMSCs were induced to become NSC-like cells, which proliferate in neurosphere-like structures and express early NSC markers. Like central nervous system-derived NSCs, these BM-derived NSC-like cells were able to differentiate into cells expressing neural markers for neurons, astrocytes, and oligodendrocytes. Whole-cell patch clamp recording revealed that neuron-like cells, differentiated from NSC-like cells, exhibited electrophysiological properties of neurons, including action potentials. Transplantation of NSC-like cells into mouse brain confirmed that these NSC-like cells retained their capability to differentiate into neuronal and glial cells in vivo. Our data show that multipotent NSC-like cells can be efficiently produced from BM-derived hMSCs in culture and that these cells may serve as a useful alternative to human neural stem cells for potential clinical applications such as autologous neuroreplacement therapies.  相似文献   

2.
Stem cells that can give rise to neurons, astroglia, and oligodendroglia have been found in the developing and adult central nervous system (CNS) of rodents. Yet, their existence within the human brain has not been documented, and the isolation and characterization of multipotent embryonic human neural stem cells have proven difficult to accomplish. We show that the developing human CNS embodies multipotent precursors that differ from their murine counterpart in that they require simultaneous, synergistic stimulation by both epidermal and fibroblast growth factor-2 to exhibit critical stem cell characteristics. Clonal analysis demonstrates that human C NS stem cells are multipotent and differentiate spontaneously into neurons, astrocytes, and oligodendrocytes when growth factors are removed. Subcloning and population analysis show their extensive self-renewal capacity and functional stability, their ability to maintain a steady growth profile, their multipotency, and a constant potential for neuronal differentiation for more than 2 years. The neurons generated by human stem cells over this period of time are electrophysiologically active. These cells are also cryopreservable. Finally, we demonstrate that the neuronal and glial progeny of long-term cultured human CNS stem cells can effectively survive transplantation into the lesioned striatum of adult rats. Tumor formation is not observed, even in immunodeficient hosts. Hence, as a consequence of their inherent biology, human CNS stem cells can establish stable, transplantable cell lines by epigenetic stimulation. These lines represent a renewable source of neurons and glia and may significantly facilitate research on human neurogenesis and the development of clinical neural transplantation.  相似文献   

3.
Multipotent precursors able to generate neurons, astrocytes, and oligodendrocytes have previously been isolated from human brain embryos and recently from neurogenic regions of the adult human brains. The isolation of multipotent neural precursors from adult human should open new perspectives to study adult neurogenesis and for brain repair. The present study describes the in vitro isolation from adult human brains of a progenitor responsive to both epidermal and basic fibroblast growth factors that forms spheres as it proliferates. Single spheres derived from various regions of the brain generate in vitro neurons, astrocytes, and oligodendrocytes. The clonal origin of the spheres was revealed by genomic viral insertion using lentiviral vector. Interestingly, this vector appears to be a potent tool for gene transfer into human neural progeny. Ninety-six percent of the spheres investigated were multipotent. Multipotent precursors were isolated from all brain regions studied, including the temporal and the frontal cortex, the amygdala, the hippocampus, and the ventricular zone. This study is the first evidence that primitive precursors such as multipotent precursors exist in the adult human cortex and can reside far from the ventricles. Neurogenesis derived from adult human progenitors differ to murine neurogenesis by the requirement of laminin for oligodendrocyte generation and by the action of basic-fibroblast growth factor and platelet derived growth factor that prevented the formation of oligodendrocytes and neurons. Moreover, the differentiation of human adult precursors seems to differ from fetal ones: adult precursors do not necessitate the removal of mitogen for differentiation. These results indicate that the study of adult multipotent precursors is a new platform to study adult human neurogenesis, potentially generate neural cells for transplantation, and design protocols for in vivo stimulation.  相似文献   

4.
Weible MW  Chan-Ling T 《Glia》2007,55(11):1156-1168
If cell based therapy for spinal cord injury is to become a reality, greater insights into the biology of human derived spinal cord stem cells are a prerequisite. Significant species differences and regional specification of stem cells necessitates determining the effects of growth factors on human spinal cord stem cells. Fetal spinal cords were dissociated and expanded as neurospheres in medium with bone morphogenetic protein 4 (BMP4), leukemia inhibitory factor (LIF) or BMP4 and LIF. First-generation neurospheres comprised a heterogeneous population of neural cell types and after plating emergent cells included neurons, oligodendrocytes and GFAP(+) cells which coexpressed stem cells markers and those of the neuronal lineage and were thus identified as GFAP(+) neural precursor cells (NPC). When plated, neurospheres maintained in BMP4 demonstrated a reduced proportion of emergent oligodendrocytes from 13 to 4%, whereas LIF had no statistically significant effect on cell type distribution. Combining BMP4 and LIF reduced the proportion of oligodendrocytes to 3% and that of neurons from 37 to 16% while increasing the proportion of GFAP(+) NPC from 45 to 79%. After 10 passages in control media aggregates gave rise to multiple neural phenotypes and only continued passage of neurospheres in the presence of BMP4 and LIF resulted in unipotent aggregates giving rise to only astrocytes. These results provide a means of obtaining pure populations of human spinal-cord derived astrocytes, which could be utilized for further studies of cell replacement strategies or in vitro evaluation of therapeutics.  相似文献   

5.
Pluripotency and the capability for unlimited self-renewal make human embryonic stem cells a promising tool for studying development and new cell replacement strategies. Here, we present a simple differentiation protocol, which permits the direct conversion of human embryonic stem cells into neurogenic precursors without formation of embryoid bodies or coculture with other cell types. In this protocol, human embryonic stem cells propagated as adherent cultures are induced to differentiate into the neural lineage in media containing fibroblast growth factor-2. The adherent cells are proliferated to form detaching neurospheres. Upon plating, these neurospheres give rise to a homogenous population of neural precursors capable of generating neurons, astrocytes and oligodendrocytes. Our findings suggest that fibroblast growth factor-2 exposure alone suffices to promote neural conversion of adherently growing human embryonic stem cell cultures.  相似文献   

6.
Neural stem cells: isolation and differentiation into cholinergic neurons   总被引:9,自引:0,他引:9  
Wang TT  Jing AH  Luo XY  Li M  Kang Y  Zou XL  Chen H  Dong J  Liu S 《Neuroreport》2006,17(13):1433-1436
This investigation aimed to isolate neural stem cells from neonatal hippocampus and induce them to differentiate into cholinergic neurons. The isolated neural stem cells were incubated in serum-free Dulbecco's modified Eagle medium/F12 medium added with 20 ng/ml basic fibroblast growth factor and B27. The cell line isolated from the hippocampal formation of neonatal rats expressed nestin and had the potency to form clones and differentiate into neurons, astrocytes and oligodendrocytes. Embryonic chick skeletal muscle extract was used to induce the differentiation of the neural stem cells into cholinergic neurons. Immunocytochemistry was used to detect the choline acetyltransferase antigen of cholinergic neurons for confirmation. The results showed that embryonic chick skeletal muscle extract could induce isolated neural stem cell to differentiate into a significantly larger number of cholinergic neurons than controls.  相似文献   

7.
人神经干细胞的分离、克隆和动物脑内移植及转基因表达   总被引:16,自引:3,他引:13  
目的分离和克隆人神经干细胞,并在体外和体内分析其生物学特征.方法我们联合采用四步法从人胚胎前脑分离制备多潜能神经干细胞,并使用重组腺病毒相关病毒载体(rAAV)将LacZ基因和胶质细胞起源的神经营养因子(GDNF)基因转移到神经干细胞.结果二株人神经干细胞被成功建立.这些克隆化后的神经干细胞在细胞培养中和移植到新生小鼠脑内后能发育分化成神经元、少枝胶质细胞和星形胶质细胞.在rAAV转导基因后,神经干细胞可在体外和体内表达转基因产物.结论这种具有转基因表达能力的神经干细胞为神经系统疾病的进一步治疗研究提供了有潜在价值的细胞资源.  相似文献   

8.
In response to stroke, subpopulations of cortical reactive astrocytes proliferate and express proteins commonly associated with neural stem/progenitor cells such as glial fibrillary acidic protein (GFAP) and Nestin. To examine the stem cell-related properties of cortical reactive astrocytes after injury, we generated GFAP-CreER(TM);tdRFP mice to permanently label reactive astrocytes. We isolated cells from the cortical peri-infarct area 3 d after stroke, and cultured them in neural stem cell medium containing epidermal growth factor and basic fibroblast growth factor. We observed tdRFP-positive neural spheres in culture, suggestive of tdRFP-positive reactive astrocyte-derived neural stem/progenitor cells (Rad-NSCs). Cultured Rad-NSCs self-renewed and differentiated into neurons, astrocytes, and oligodendrocytes. Pharmacological inhibition and conditional knock-out mouse studies showed that Presenilin 1 and Notch 1 controlled neural sphere formation by Rad-NSCs after stroke. To examine the self-renewal and differentiation potential of Rad-NSCs in vivo, Rad-NSCs were transplanted into embryonic, neonatal, and adult mouse brains. Transplanted Rad-NSCs were observed to persist in the subventricular zone and secondary Rad-NSCs were isolated from the host brain 28 d after transplantation. In contrast with neurogenic postnatal day 4 NSCs and adult NSCs from the subventricular zone, transplanted Rad-NSCs differentiated into astrocytes and oligodendrocytes, but not neurons, demonstrating that Rad-NSCs had restricted differentiation in vivo. Our results indicate that Rad-NSCs are unlikely to be suitable for neuronal replacement in the absence of genetic or epigenetic modification.  相似文献   

9.
The mammalian central nervous system (CNS) contains multipotent stem cells that develop into neurons, astrocytes and oligodendrocytes. Our current data show that fetal and adult human CNS stem cell isolates display similar proliferation kinetics, differentiate into three major cell types of the nervous system and express similar sets of regulatory genes. However, each individual CNS stem cell isolate could be distinguished by its specific gene expression and developmental potential.  相似文献   

10.
目的探讨体外培养神经干细胞是否表达趋化因子受体CCR5。方法采用无血清方法分离、培养新生大鼠海马神经干细胞,细胞免疫荧光方法检测神经干细胞标志巢蛋白(nestin)表达及干细胞多向分化为神经元及胶质细胞的能力;后通过细胞免疫荧光及逆反转录酶一聚合酶链反应(RTPCR)方法检测神经干细胞表达趋化因子受体CCR5的情况。结果体外培养新生大鼠海马神经干细胞呈nestin阳性,可分化为神经丝蛋白200(NF200)阳性神经元、胶质纤维酸性蛋白(GFAP)阳性星形胶质细胞及2,3-环核苷酸磷酸二酯酶(CNP)阳性少突胶质细胞,CCR5细胞免疫荧光及RT-PCR证实神经干细胞表达趋化因子受体CCR5。结论新生大鼠海马神经干细胞表达趋化因子受体CCR5,为进一步研究其体内、外迁移提供理论依据。  相似文献   

11.
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.  相似文献   

12.
目的 探讨体外培养神经干细胞是否表达趋化因子受体CX3CR1.方法 采用无血清方法分离、培养新生大鼠海马神经干细胞,细胞免疫荧光方法检测神经干细胞标志巢蛋白(nestin)表达及干细胞多向分化为神经元及胶质细胞的能力,后通过细胞免疫荧光及RT-PCR方法检测神经干细胞表达趋化因子受体CX3CR1的情况.结果 体外培养新生大鼠海马神经干细胞呈nestin阳性.可分化为神经丝蛋白200(NF200)阳性的神经元、胶质纤维酸性蛋白(GFAP)阳性的星形胶质细胞及2',3'-环核苷酸-3'-磷酸二酯酶(CNP)阳性的少突胶质细胞,细胞免疫荧光及RT-PCR证实神经干细胞表达趋化因子受体CX3CR1.结论 新生大鼠海马神经干细胞表达趋化因子受体CX3CR1.为进一步研究其体内外迁移提供理论依据.  相似文献   

13.
Nakayama T  Sai T  Otsu M  Momoki-Soga T  Inoue N 《Neuroreport》2006,17(14):1519-1523
Neural stem cells differentiate from embryonic stem cells via formation of neural stem spheres under free-floating conditions in astrocyte-conditioned medium. Subsequent culture of neural stem spheres on an adhesive substrate with fibroblast growth factor-2 promotes the migration of neural stem cells onto the substrate, resulting in an increase in the number of cells. These embryonic stem cell-derived neural stem cells can be differentiated almost exclusively into astrocytes by withdrawing fibroblast growth factor-2 from the medium without any additional instructions.  相似文献   

14.
The isolation and expansion of human neural progenitor cells have important potential clinical applications, because these cells may be used as graft material in cell therapies to regenerate tissue and/or function in patients with central nervous system (CNS) disorders. This paper describes a continuously dividing multipotent population of progenitor cells in the human embryonic forebrain that can be propagated in vitro. These cells can be maintained and expanded using a serum-free defined medium containing basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), and epidermal growth factor (EGF). Using these three factors, the cell cultures expand and remain multipotent for at least 1 year in vitro. This period of expansion results in a 10(7)-fold increase of this heterogeneous population of cells. Upon differentiation, they form neurons, astrocytes, and oligodendrocytes, the three main phenotypes in the CNS. Moreover, GABA-immunoreactive and tyrosine hydroxylase-immunoreactive neurons can be identified. These results demonstrate the feasibility of long-term in vitro expansion of human neural progenitor cells. The advantages of such a population of neural precursors for allogeneic transplantation include the ability to provide an expandable, well-characterized, defined cell source which can form specific neuronal or glial subtypes.  相似文献   

15.
16.
Recent studies have revealed that neural precursor cells can be expanded not only from the subventricular zone and hippocampus but also from other regions of the human embryonic brain. To determine the regional differences of these precursor cells, we divided the brain of a 9-week-old human embryo into four parts, i.e., telencephalon, diencephalon, mesencephalon, and rhombencephalon. All cultures of the tissues yielded neurospheres, and these spheres gave rise to neurons, astrocytes, and oligodendrocytes. An analysis of clonal populations revealed that these precursor cells were multipotent, and two region-specific differences in neural precursor cells were revealed: 1) The precursor cells from the rostral part of the brain tended to proliferate faster than those from the caudal part, and 2) the precursor cells from the diencephalon and mesencephalon gave rise to more tyrosine hydoxylase (TH)-positive neurons than those from the telencephalon and rhombencephalon. When 50-day-cultured spheres were caused to differentiate, the percentage of TH-positive cells per total cell population was 1.2% for diencephalic and mesencephalic precursors, whereas it was 0.4% for telencephalic and rhombencephalic ones. Furthermore, the TH-positive cells from diencephalic and mesencephalic precursors were large, multipolar, and gamma-aminobutyric acid (GABA)-negative, which suggested that these cells were midbrain dopaminergic neurons. In contrast, TH-positive cells from telencephalic and rhombencephalic precursors were small, bipolar, and GABA-positive. These results suggest that human neural precursor cells might have the potential to differentiate into a variety of cells but retain regional specificity.  相似文献   

17.
18.
Direct isolation of human central nervous system stem cells (CNS-SC) based on cell surface markers yields a highly purified stem cell population that can extensively expand in vitro and exhibit multilineage differentiation potential both in vitro and in vivo. The CNS-SC were isolated from fetal brain tissue using the cell surface markers CD133(+), CD34(-), CD45(-), and CD24(-/lo) (CD133(+) cells). Fluorescence-activated cell sorted (FACS) CD133(+) cells continue to expand exponentially as neurospheres while retaining multipotential differentiation capacity for >10 passages. CD133(-), CD34(-), and CD45(-) sorted cells (approximately 95% of total fetal brain tissue) fail to initiate neurospheres. Neurosphere cells transplanted into neonatal immunodeficient NOD-SCID mice proliferated, migrated, and differentiated in a site-specific manner. However, it has been difficult to evaluate human cell engraftment, because many of the available monoclonal antibodies against neural cells (beta-tubulin III and glial fibrillary acidic protein) are not species specific. To trace the progeny of human cells after transplantation, CD133(+)-derived neurosphere cells were transduced with lentiviral vectors containing enhanced green fluorescent protein (eGFP) expressed downstream of the phosphoglycerate kinase promoter. After transduction, GFP(+) cells were enriched by FACS, expanded, and transplanted into the lateral ventricular space of neonatal immunodeficient NOD-SCID brain. The progeny of transplanted cells were detected by either GFP fluorescence or antibody against GFP. GFP(+) cells were present in the subventricular zone-rostral migrating stream, olfactory bulb, and hippocampus as well as nonneurogenic sites, such as cerebellum, cerebral cortex, and striatum. Antibody against GFP revealed that some of the cells displayed differentiating dendrites and processes with neurons or glia cells. Thus, marking human CNS-SC with reporter genes introduced by lentiviral vectors is a useful tool with which to characterize migration and differentiation of human cells in this mouse transplantation model.  相似文献   

19.
Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor‐mediated expansion with pre‐exposure to the differentiation‐inducing agent retinoic acid and subsequent immunoisolation of CD133‐positive cells. This protocol yields an adherent and self‐renewing population of hindbrain/spinal cord radial glia (RG)‐like neural precursor cells (RGL‐NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL‐NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate‐determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL‐NPCs efficiently convert into NG2‐positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL‐NPCs expedite the generation of PSC‐derived oligodendrocytes with O4‐, 4860‐, and myelin basic protein (MBP)‐positive cells that already appear within 7 weeks following growth factor withdrawal‐induced differentiation. Thus, RGL‐NPCs may serve as robust tool for time‐efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells. GLIA 2015;63:2152–2167  相似文献   

20.
This study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain‐death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell‐derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co‐positive cells (microtubule‐associated protein 2 and tyrosine hydroxylase; aromatic l‐amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell‐based therapeutic strategy for Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号