首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Although it is widely believed that astrocytes lack excitability in adult tissue, primitive action potential-like responses have been elicited from holding potentials negative to -80 mV, in cultured and injury-induced gliotic rodent astrocytes and in human glia under pathological conditions such as glioblastomas and temporal lobe epilepsy. The present study was designed to investigate the properties of astrocytes (identified by immunoreactivity for glial fibrillary acidic protein) derived from multipotent human embryonic CNS stem cells and cultured for 12-25 days in differentiating conditions. We describe here for the first time that brief (1 ms) current pulses elicit spikes from a resting potential (VREST) of approximately -37 mV and, more interestingly, that spontaneous firing can be occasionally recorded in human astrocytes. A voltage-clamp study revealed that in these cells: (i) the half-inactivation of the tetrodotoxin (TTX)-sensitive Na+ channels is around VREST; (ii) the delayed rectifier K+ current is very small; (iii) the ever-present transient outward A-type K+ channels are paradoxically capable of inhibiting the action potentials elicited from a negative membrane potential (-55 to -60 mV); and (iv) inwardly rectifying currents are not present. The responses predicted from a simulation model are in agreement with the experiments. As suggested by recent studies, the decrease of Na+ channel expression and the changes of the electrophysiological properties during the postnatal maturation of the CNS seem to exclude the possibility that astrocytes may play an excitable role in adult tissue. Our data show that excitability and firing should be considered an intrinsic attribute of human astrocytes during CNS development. This is likely to have physiological importance because the role of astrocytes during development is different from the [K+]o-buffering role played in adult CNS, namely the glutamate release and/or the guiding of migrating neurons.  相似文献   

2.
To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decrease...  相似文献   

3.
The adult CNS has a very limited capacity to regenerate neurons after insult. To overcome this limitation, the transplantation of neural progenitor cells (NPCs) has developed into a key strategy for neuronal replacement. This study assesses the long‐term survival, migration, differentiation, and functional outcome of NPCs transplanted into the ischemic murine brain. Hippocampal neural progenitors were isolated from FVB‐Cg‐Tg(GFPU)5Nagy/J transgenic mice expressing green fluorescent protein (GFP). Syngeneic GFP‐positive NPCs were stereotactically transplanted into the hippocampus of FVB mice following a transient global cerebral ischemia model. Behavioral tests revealed that ischemia/reperfusion induced spatial learning disturbances in the experimental animals. The NPC transplantation promoted cognitive function recovery after ischemic injury. To study the long‐term fate of grafted GFP‐positive NPCs in a host brain, immunohistochemical approaches were applied. Confocal microscopy revealed that grafted cells survived in the recipient tissue for 90 days following transplantation and differentiated into mature neurons with extensive dendritic trees and apparent spines. Immunoelectron microscopy confirmed the formation of synapses between the transplanted GFP‐positive cells and host neurons that may be one of the factors underlying cognitive function recovery. Repair and functional recovery following brain damage represent a major challenge for current clinical and basic research. Our results provide insight into the therapeutic potential of transplanted hippocampal progenitor cells following ischemic brain injury. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Neurogenesis in the dentate gyrus is sensitive to endogenous and exogenous factors that influence hippocampal function. Ongoing neurogenesis and the integration of these new neurons throughout life thus may provide a sensitive indicator of environmental stress. We examined the effects of Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls (PCBs), on the development and function of newly generated dentate granule cells. Early exposure to A1254 has been associated with learning impairment in children, suggesting potential impact on the development of hippocampus and/or cortical circuits. Oral A1254 (from the 6th day of gestation to postnatal day 21) produced the expected increase in PCB levels in brain at postnatal day 21, which persisted at lower levels into adulthood. A1254 did not affect the proliferation or survival of newborn neurons in immature animals nor did it cause overt changes in neuronal morphology. However, A1254 occluded the normal developmental increase in sEPSC frequency in the third post‐mitotic week without altering the average sEPSC amplitude. Our results suggest that early exposure to PCBs can disrupt excitatory synaptic function during a period of active synaptogenesis, and thus could contribute to the cognitive effects noted in children exposed to PCBs.  相似文献   

5.
Spinal cord injury (SCI) is a devastating condition with limited capacity for repair. Cell transplantation is a potential strategy to promote SCI repair with cells from the olfactory system being promising candidates. Although transplants of human olfactory mucosa (OM) are already ongoing in clinical trials, the repair potential of this tissue remains unclear. Previously, we identified mesenchymal‐like stem cells that reside in the lamina propria (LP‐MSCs) of rat and human OM. Little is known about these cells or their interactions with glia such as olfactory ensheathing cells (OECs), which would be co‐transplanted with MSCs from the OM, or endogenous CNS glia such as oligodendrocytes. We have characterized, purified, and assessed the repair potential of human LP‐MSCs by investigating their effect on glial cell biology with specific emphasis on CNS myelination in vitro. Purified LP‐MSCs expressed typical bone marrow MSC (BM‐MSC) markers, formed spheres, were clonogenic and differentiated into bone and fat. LP‐MSC conditioned medium (CM) promoted oligodendrocyte precursor cell (OPC) and OEC proliferation and induced a highly branched morphology. LP‐MSC‐CM treatment caused OEC process extension. Both LP and BM‐MSCs promoted OPC proliferation and differentiation, but only myelinating cultures treated with CM from LP and not BM‐MSCs had a significant increase in myelination. Comparison with fibroblasts and contaminating OM fibroblast like‐cells showed the promyelination effect was LP‐MSC specific. Thus LP‐MSCs harvested from human OM biopsies may be an important candidate for cell transplantation by contributing to the repair of SCI. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We have derived two monoclonal antibodies, MF-1 and MF-2, which both recognize the same 58-kD antigen. Light and electron microscopic immunocytochemistry showed that this antigen is highly expressed in the large mossy fibre terminals innervating the proximal portion of the apical dendrites of pyramidal neurons in hippocampal field CA3. Staining was seen in the adult hippocampus in rats and mice, and in a post mortem human sample. Comparison with the Timm stain showed that the antibodies recognize mossy fibres from all parts of the adult dentate gyrus except for the tip of the infrapyramidal blade (the latest part of the dentate gyrus to develop). The MF antigen is expressed by mature terminals, and is not detected immunohistochemically in developing hippocampal mossy terminals until the end of the first postnatal week (i.e. later than the Timm-positive material). It was also found in host mossy fibre terminals innervating embryonic CA3 pyramids transplanted into adult hosts, but not in areas of the graft containing transplanted CA1 pyramids. These results indicate that this previously undescribed, late-developing antigen provides a useful specific marker for the mossy fibre projection in both the normal hippocampus and in situations of experimentally manipulated connectivity.  相似文献   

7.
Neuroepithelial stem cells derived from the swine mesencephalic neural tube were examined regarding their eligibility for neural xenografting as a donor material, with the aim of evaluating myelinated axon formation and both types of synaptic formation with xenogeneic host neurons as part of possible neural circuit reconstruction. The mesencephalic neural tube tissues were dissected out from swine embryos at embryonic days 17 and 18 and were implanted immediately into the striatum of the Parkinsonian model rat. The swine-derived grafts had many nestin-positive rosette-forming, neurofilament-positive, and tyrosine hydroxylase-positive cells in the rat striatum. Electron microscopic study revealed both efferent and afferent synaptic formations in the donor-derived immature neurons or tyrosine hydroxylase-positive donor cells in the grafts. Myelinated axons, both positive and negative for swine-specific neurofilament antibody, were mingled together in the graft. These results indicated that implanted neuroepithelial stem cells could survive well and divide asymmetrically into both nestin-expressing precursors and differentiated neurochemical marker-expressing neurons in the xenogeneic rat striatum, with the help of an immunosuppressant. Donor-derived immature neurons formed both efferent and afferent synapses with xenogeneic host neurons, and donor-derived axons were myelinated, which suggests that implanted swine neuroepithelial stem cells could possibly restore damaged neuronal circuitry in the diseased brain.  相似文献   

8.
Self-renewal and differentiation of CNS stem cells are regulated by still poorly understood cell-cell interactions. Notch is a well-known cell surface protein that can promote both cell cycle progression and mitotic arrest but the molecular mechanism controlling these opposite effects is unknown. Here we demonstrate that, in CNS stem cells, the level of active Notch1 determines the cellular response. Specifically, low levels of the active form of Notch1 promote proliferation whereas high levels lead to growth arrest. Here we provide the first evidence that Notch effects on proliferation and differentiation are a function of dose, and propose a hypothesis on how oncogenes may also act as tumor suppressors.  相似文献   

9.
Cell suspensions from the fetal septal region were injected stereotaxically into the hippocampus of fornix-fimbria-transected adult rats. The host rats were sacrificed up to 3 months after the operation and the hippocampus sliced into 350 microns transverse slices. Intracellular recording was made from CA1 neurons adjacent to the graft. Electrical stimulation of the graft produced a voltage-dependent depolarization in some recorded neurons. This was associated with an increase in spontaneous and anodal break action potential discharges. In addition, a slow after-hyperpolarization (AHP) which typically follows a burst discharge was blocked during the depolarization indicating that the stimulation may block a Ca2+-dependent K+ current. The effects of the stimulation were antagonized by atropine. A response to the stimulation was seen 2 weeks but not 1 week after grafting. Over time, cells that were located away from the graft became activated by the stimulation. This was correlated with the extent of proliferation of acetylcholinesterase-containing fibers around the graft. These results suggest that grafted septal neurons make viable cholinergic connections with a host hippocampus.  相似文献   

10.
目的 探讨骨髓源性神经干细胞自体移植对癫(癎)大鼠海马的修复作用.方法 雄性SD大鼠随机分为正常对照组、移植组和非移植组.无菌条件下分离大鼠骨髓基质细胞,在特定条件下培养、诱导其分化为神经干细胞;对移植组和非移植组大鼠建立颞叶癫(癎)模型,将诱导分化的神经干细胞自体移植至移植组大鼠右侧海马内,观察移植后1周、2周、4周、8周和16周模型鼠海马的形态学变化.结果 移植组与非移植组海马CA3区锥体细胞数各时间点显著少于正常对照组(均P<0.01);与非移植组比较,移植组海马CA3区锥体细胞数于移植后第2~16周明显增多(均P<0.01);移植组各时间段之间差异有统计学意义(均P<0.01).与正常对照组相比,移植组和非移植组海马损伤侧的Timm染色评分显著增高(均P<0.01);但移植组移植2周后各时间点评分显著低于非移植组(均P<0.01);非移植组随制模时间延长评分持续升高.MRI检查显示在神经干细胞移植后1周和2周时低信号改变区比较局限,此后低信号影随着时间的推移逐渐增大.结论 骨髓源性神经干细胞自体移植至癫(癎)大鼠后能够在海马中生存并迁移,具有减轻海马CA3区锥体细胞缺失、抑制海人酸引起的苔状纤维发芽的修复作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号