首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Aging impairs the competence of the hippocampus for synaptic reorganization after injury. This potentially is due to the inability of the aging hippocampus to up-regulate the critical neurotrophic factors for prolonged periods after injury to levels at which they can stimulate neurite outgrowth and facilitate synaptic reorganization. We hypothesize that the concentrations of neurotrophins in the hippocampus after injury depend on the age at the time of injury. We quantified the concentrations of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the hippocampus of young, middle-aged, and aged Fischer 344 rats at 4 days after kainic acid (KA)-induced injury. In comparison with the age-matched intact hippocampus, the KA-lesioned hippocampus exhibited increased levels of BDNF and NGF in all three age groups. In contrast, the NT-3 concentration was unaltered after KA lesion. Notwithstanding similar percentage increases in BDNF after injury, the lesioned middle-aged and aged hippocampus contained 45-52% less BDNF than the lesioned young hippocampus. NGF and NT-3 levels after injury were comparable across the three age groups, however. Furthermore, lower BDNF concentration in the injured aging hippocampus was associated with normal astrocytic response but significantly diminished microglial reaction. Thus, in comparison with the injured young hippocampus, the injured aging hippocampus contains considerably less BDNF but similar levels of NGF and NT-3. Lower BDNF levels in the injured aging hippocampus might underlie the diminished spontaneous healing response observed in the aging hippocampus after injury, particularly in terms of synaptic reorganization and dentate neurogenesis.  相似文献   

2.
It is well known that some growth factors can not only rescue neurons from death, but also improve motor functions following spinal cord injury. However, their cellular distribution in situ and temporal expressions following spinal cord injury have not been determined, especially in primates. This study investigated the temporal changes in the expression of two growth factors--epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta1) in the injured motoneurons of the spinal cord and the associated precentral gyrus in adult Rhesus monkeys subjected to spinal cord hemisection. Animals were allowed to survive 7, 14, 30 and 90 days post operation (dpo). Functional recovery of the hindlimbs was assessed using Tarlov scale. The immunohistological expressions of EGF and TGF-beta1 in the ventral horn motoneurons decreased sharply at 7 dpo in the cord segments caudal to the lesion site, which was followed by an increase and a peak between 14 and 30 dpo for EGF and at 90 dpo for TGF-beta1. Changes in the expression of EGF in the precentral gyrus were similar to that in the spinal cord. No TGF-beta1 immunoreactive neurons were detected in the precentral gyrus. In the spinal segments rostral to the lesion, the expressions of EGF and TGF-beta1 peaked at 30 dpo. The mRNA of EGF was detected in both spinal motoneurons and the precentral gyrus, while that of TGF-beta1, only in the spinal motoneuons, suggesting that the spinal motoneurons themselves could synthesize both the growth factors. Partial locomotor recovery in hindlimbs was seen, especially after 14 dpo. It was concluded that a possible association existed between the modulation of EGF and TGF-beta1 and the recovery of locomotor function, and their roles differed somewhat in the neuroplasticity observed after spinal cord injury in primates.  相似文献   

3.
The Chinese medicine compound, Jisuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spinal cord injury. However, the mechanism remains unclear. Thus, we established a rat model of acute spinal cord injury using a modified version of Allen's method. Jisuikang(50, 25, and 12.5 g/kg/d) and prednisolone were administered 30 minutes after anesthesia. Basso, Beattie, and Bresnahan locomotor scale scores and the oblique board test showed improved motor function recovery in the prednisone group and moderate-dose Jisuikang group compared with the other groups at 3–7 days post-injury. The rats in the moderate-dose Jisuikang group recovered best at 14 days post-injury. Hematoxylin-eosin staining and transmission electron microscopy showed that the survival rate of neurons in treatment groups increased after 3–7 days of administration. Further, the structure of neurons and glial cells was more distinct, especially in prednisolone and moderate-dose Jisuikang groups. Western blot assay and immunohistochemistry showed that expression of brain-derived neurotrophic factor(BDNF) in injured segments was maintained at a high level after 7–14 days of treatment. In contrast, expression of nerve growth factor(NGF) was down-regulated at 7 days after spinal cord injury. Real-time fluorescence quantitative polymerase chain reaction showed that expression of BDNF and NGF m RNA was induced in injured segments by prednisolone and Jisuikang. At 3–7 days after injury, the effect of prednisolone was greater, while 14 days after injury, the effect of moderate-dose Jisuikang was greater. These results confirm that Jisuikang can upregulate BDNF and NGF expression for a prolonged period after spinal cord injury and promote repair of acute spinal cord injury, with its effect being similar to prednisolone.  相似文献   

4.
This study shows that both BDNF and NT-3 can prevent cell death in axotomized adult rat rubrospinal neurons (RSNs), but that the efficacy of neuroprotection depends on the temporal pattern of treatment. At 8 weeks after cervical spinal cord injury, 51% of the RSNs had died. Subarachnoidal BDNF infusion into the cisterna magna for 4 weeks resulted in neuronal hypertrophy and 71% survival. Continuous infusion for 8 weeks into the lumbar subarachnoidal space with either BDNF or NT-3 gave similar survival rates, while a combination of BDNF and NT-3 resulted in 96% survival, although the cells were atrophic. When administration of either BDNF or NT-3 was delayed and performed during postoperative weeks 5-8, the number of surviving neurons was increased compared to early treatment. Delayed treatment with a combination of BDNF and NT-3 resulted in complete survival and a reduction in neuronal atrophy. A decreased expression of TrkB receptors and microtubule-associated protein-2 in the RSNs after axotomy was counteracted by BDNF and NT-3. Microglial activity remained increased even when complete cell survival was achieved. Thus, the combination of neurotrophins as well as the temporal pattern of treatment need to be adequately defined to optimize survival of injured spinal tract neurons.  相似文献   

5.
Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) have previously been shown to support survival and axonal regeneration in various types of neurons. Also, synergistic neuroprotective effects of these neurotrophins have been reported in descending rubrospinal neurons after cervical spinal cord injury (Novikova et al., [2000] Eur. J. Neurosci. 12:776-780). The present study investigates the effects of intrathecally delivered NT-3 and BDNF on the survival and atrophy of ascending spinocerebellar neurons of Clarke nucleus (CN) after cervical spinal cord injury in adult rats. At 8 weeks after cervical spinal cord hemisection, 40% of the axotomized CN neurons had been lost, and the remaining cells exhibited marked atrophy. Microglial activity was significantly increased in CN of the operated side. Intrathecal infusion of NT-3 for 8 weeks postoperatively resulted in 91% cell survival and a reduction in cell atrophy, but did not reduce microglial activity. In spite of the fact that the CN neurons expressed both TrkC and TrkB receptors, only NT-3 had a neuroprotective effect, whereas BDNF was ineffective. Furthermore, when a combination of BDNF and NT-3 was administered, the neuroprotective effect of NT-3 was lost. The present results indicate a therapeutic potential for NT-3 in the treatment of spinal cord injury, but also demonstrate that in certain neuronal populations the neuroprotection obtained by a combination of neurotrophic factors may be less than that of a single neurotrophin.  相似文献   

6.
Expression of pituitary adenylate cyclase-activating polypeptide in sensory neurons varies with injury or inflammation. The neurotrophins NGF and NT-3 are profound regulators of neuronal peptidergic phenotype in intact and injured sensory neurons. This study examined their potential for modulation of PACAP expression in adult rat with intact and injured L4-L6 spinal nerves with or without immediate or delayed intrathecal infusion of NT-3 or NGF. Results indicate that in L5 DRG, few trkC neurons express high levels of PACAP mRNA in the intact state, but many do following injury. The elevated expression in injured neurons is mitigated by NT-3 infusion, suggesting a role for NT-3 in returning the 'injured phenotype' back towards an 'intact phenotype'. NGF dramatically up-regulated PACAP expression in trkA-positive neurons in both intact and injured DRGs, implicating NGF as a positive regulator of PACAP expression in nociceptive neurons. Surprisingly, NT-3 modulates PACAP expression in an antagonistic fashion to NGF in intact neurons, an effect most evident in the trkA neurons not expressing trkC. Both NT-3 and NGF infusion results in decreased detection of PACAP protein in the region of the gracile nuclei, where central axons of the peripherally axotomized large sensory fibers terminate. NGF infusion also greatly increased the amount of PACAP protein detected in the portion of the dorsal horn innervated by small-medium size DRG neurons, while both neurotrophins appear able to prevent the decrease in PACAP expression observed in these afferents with injury. These results provide the first insights into the potential molecules implicated in the complex regulation of PACAP expression in sensory neurons.  相似文献   

7.
Oudega M  Hagg T 《Brain research》1999,818(2):67-438
We have investigated the effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on the intraspinal regeneration of anterogradely labeled axotomized ascending primary sensory fibers in the adult rat. These fibers were allowed to grow across a predegenerated peripheral nerve graft and back into the thoracic spinal cord. In control animals that had been infused with vehicle for two weeks into the dorsal column, 3 mm rostral to the nerve graft, essentially no fibers had extended from the nerve graft back into the spinal cord. The number of sensory fibers in the rostral end of the nerve graft was not significantly different between control and neurotrophin-infused animals. With infusion of NGF, 37+/-2% of the fibers at the rostral end of the graft had grown up to 0.5 mm into the dorsal column white matter, 30+/-2% up to 1 mm, 19+/-3% up to 2 mm and 8+/-2% up to 3 mm, i.e., the infusion site. With infusion of NT-3, sensory fiber outgrowth was similar to that seen with NGF, but with BDNF fewer fibers reached farther distances into the cord. Infusion of a mixture of all three neurotrophins did not increase the number of regenerating sensory fibers above that seen after infusion of the individual neurotrophins. These findings suggest that injured ascending sensory axons are responsive to all three neurotrophins and confirm our previous findings that neurotrophic factors can promote regeneration in the adult central nervous system.  相似文献   

8.
Changes in brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) contents following thoracic spinal cord transection were investigated in the cerebral cortex, hippocampus, and cerebellum of rats. The NT-3 content became significantly elevated at 3 days after transection only in the cerebellum and gradually declined to the control level by 6 days after the injury, remaining unchanged in the cerebral cortex and hippocampus. No significant change in the BDNF content was observed in any of the regions tested. Immunohistochemical analysis showed that the labeling indicating NT-3-like immunoreactivity was intensified in both cerebellar granule and Purkinje cells 3 days after the injury. The number of Purkinje cells with aggregation of chromatin around the nuclear membrane and swelling of the cytoplasm and/or organelles gradually increased with time starting 4 days after the injury, demonstrating morphological changes indicative of necrosis. However, no abnormal morphology was found in cerebellar granule cells at any time examined. We suggest that it is reasonable that increased NT-3 stimulated the death of Purkinje cells, because 1) the degeneration was necrosis, which is known to be accelerated by neurotrophins under certain pathological conditions, and 2) the increase in NT-3 occurred prior to Purkinje cell degeneration. Therefore, our present results may imply that spinal cord injury-induced NT-3 accelerates injury rather than alleviates degeneration of Purkinje cells.  相似文献   

9.
Ex vivo gene therapy, utilizing modified fibroblasts that deliver BDNF or NT-3 to the acutely injured spinal cord, has been shown to elicit regeneration and recovery of function in the adult rat. Delayed grafting into the injured spinal cord is of great clinical interest as a model for treatment of chronic injury but may pose additional obstacles that are not present after acute injury, such as the need to remove an established scar, increased retrograde cell loss and/or atrophy, and diminished capacity for regeneration by neurons which may be doubly injured. The purpose of the present study was to determine if delayed grafting of neurotrophin secreting fibroblasts would have anatomical effects similar to those seen in acute grafting models. We grafted a mixture of BDNF and NT-3 producing fibroblasts or control fibroblasts into a complete unilateral cervical hemisection after a 6-week delay. Fourteen weeks after delayed grafting we found that both the neurotrophin secreting fibroblasts and control fibroblasts survived, but that only the neurotrophin secreting grafts provided a permissive environment for host axon growth, as indicated by immunostaining for RT-97, a marker for axonal neurofilaments, GAP-43, a marker for elongating axons, CGRP, a marker for dorsal root axons, and 5-HT, a marker for raphe spinal axons, within the graft. Anterograde tracing of the uninjured vestibulospinal tract showed growth into neurotrophin producing transplants but not into control grafts, while anterograde tracing of the axotomized rubrospinal tract showed a small number of regenerating axons within the genetically modified grafts, but none in control grafts. The neurotrophin expressing grafts, but not the control grafts, significantly reduced retrograde degeneration and atrophy in the injured red nucleus. Grafts of BDNF + NT-3 expressing fibroblasts delayed 6 weeks after injury therefore elicit growth from intact segmental and descending spinal tracts, stimulate modest regenerative growth by rubrospinal axons, and partially rescue axotomized supraspinal neurons and protect them from atrophy. The regeneration of rubrospinal axons into delayed transplants was much less than has been observed when similar transplants were placed acutely into a lateral funiculus or, after a 4-week delay, into a hemisection lesion. This suggests that the regenerative capacity of chronically injured red nucleus neurons was markedly diminished. The increased GAP43 reactivity in the corticospinal tracts ipsilaterally and contralaterally to the combination grafts suggests that these axons remain responsive to the neurotrophins, that the neurotrophins may stimulate both regenerative and sprouting responses, and that the grafted cells continue to secrete the neurotrophins.  相似文献   

10.
We have conducted studies to determine the potential of exercise to benefit the injured spinal cord using neurotrophins. Adult rats were randomly assigned to one of three groups: (1) intact control (Con); (2) sedentary, hemisected at a mid-thoracic level (Sed-Hx), or (3) exercised, hemisected (Ex-Hx). One week after surgery, the Ex-Hx rats were exposed to voluntary running wheels for 3, 7, or 28 days. BDNF mRNA levels on the lesioned side of the spinal cord lumbar region of Sed-Hx rats were approximately 80% of Con values at all time points and BDNF protein levels were approximately 40% of Con at 28 days. Exercise compensated for the reductions in BDNF after hemisection, such that BDNF mRNA levels in the Ex-Hx rats were similar to Con after 3 days and higher than Con after 7 (17%) and 28 (27%) days of exercise. After 28 days of exercise, BDNF protein levels were 33% higher in Ex-Hx than Con rats and were highly correlated (r=0.86) to running distance. The levels of the downstream effectors for the action of BDNF on synaptic plasticity synapsin I and CREB were lower in Sed-Hx than Con rats at all time points. Synapsin I mRNA and protein levels were higher in Ex-Hx rats than Sed-Hx rats and similar to Con rats at 28 days. CREB mRNA values were higher in Ex-Hx than Sed-Hx rats at all time points. Hemisection had no significant effects on the levels of NT-3 mRNA or protein; however, voluntary exercise resulted in an increase in NT-3 mRNA levels after 28 days (145%). These results are consistent with the concept that synaptic pathways under the regulatory role of BDNF induced by exercise can play a role in facilitating recovery of locomotion following spinal cord injury.  相似文献   

11.
Cholinergic neurons of the basal nucleus complex (BNC) respond to nerve growth factor (NCF), the first member of a polypeptide gene family that also includes brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), NGF, BDNF, and NT-3 are enriched in hippocampus. In addition, NGF and, more recently, BDNF have been shown to stimulate the cholinergic differentiation and enhance the survival of BNC cells in vitro. The present investigation was designed to test, in a comparative fashion, the in vivo effects of human recombinant NGF, BDNF, and NT-3 with confirmed activities in vitro on cholinergic and γ-aminobutyric acid (GABA)-ergic BNC neurons. The specific questions asked were whether and, to what extent, biologically active recombinant neurotrophins stimulate the transmitter phenotypes of intact cholinergic and GABAergic neurons of the BNC, and whether, and to what extent, recombinant neurotrophins protect the transmitter phenotypes of axotomized cholinergic and GABAergic neurons of the BNC following complete transections of the fimbria-fornix (measured by ChAT mRNA hybridization). Our results confirm the profound stimulatory and p75NGFR expression in both intact and axotomized cholinergic neurons and to exert minor effects on some cholinergic markers (e.g., ChAT immunoreactivity). NT-3 had no influence on GABAergic neurons. Taken together, these results indicate that, despite their significant sequence homologies and their shared abundance in target fields of BNC neurons, NGF, BDNF, and NT-3 show striking differences in their efficacies as cholinergic trophic factors. GABAergic neurons of the BNC are resistant to neurotrophins. The result of the present investigation establish that NGF excels among neurotrophins as a trophic factor for intact and injured basal forebrain cholinergic neurons. © 1994 Wiley-Liss, Inc.  相似文献   

12.
13.
Fetal spinal cord cells, Schwann cells and neurotrophins all have the capacity to promote repair of injured spinal cord in animal models. To explore the possibility of using these approaches to treat clinical patients, we have examined whether a combination of these protocols produces functional and anatomical improvement. The spinal cords of adult rats (n=16) were injured with a modified New York University (NYU) device (10 gram.5cm). One week after injury, the injured cords were injected with Dulbecco-modified Eagles Medium (DMEM, control group), or fetal spinal cord cell suspension (FSCS) plus nerve growth factor (NGF) gene-modified Schwann cells (SC) and brain-derived neurotrophic factor (BDNF) gene-modified SC (treatment group). The rats were subjected to BBB (Basso, Beattie, Bresnahan, Exp. Neurol. 139:244, 1996) behavioral tests. Anterograde tracing of corticospinal tract was performed before sacrifice 3 months after the treatment. The results showed that the combination treatment elicited a robust growth of corticospinal axons within and beyond the injury site. A dramatic functional recovery in the treatment group was observed compared with the control group. We conclude that the combination of FSCS with genetically modified Schwann cells over-expressing NGF and BDNF was an effective protocol for the treatment of severe spinal cord injury.  相似文献   

14.
Although numerous studies have examined the effects of neurotrophin treatment following spinal cord injury, few have examined the changes that occur in the neurotrophin receptors following either such damage or neurotrophin treatment. To determine what changes occur in neurotrophin receptor expression following spinal cord damage, adult rats received a midthoracic spinal cord hemisection alone or in combination with intrathecal application of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Using immunohistochemical and in situ hybridization techniques, p75, trkA, trkB, and trkC receptor expression was examined throughout the spinal cord. Results showed that trkA, full-length trkB, and trkC receptors were not present in the lesion site but had a normal expression pattern in uninjured parts of the spinal cord. In contrast, p75 receptor expression occurred on Schwann cells throughout the lesion site. BDNF and NT-3 (but not saline) applied to the lesion site increased this expression. In addition, the truncated trkB receptor was expressed in the border between the lesion and intact spinal cord. Truncated trkB receptor expression was also increased throughout the white matter ipsilateral to the lesion and BDNF (but not NT-3 or saline) prevented this increase. The study is the first to show changes in truncated trkB receptor expression that extend beyond the site of a spinal cord lesion and is one of the first to show that BDNF and NT-3 affect Schwann cells and/or p75 expression following spinal cord damage. These results indicate that changes in neurotrophin receptor expression following spinal cord injury could influence the availability of neurotrophins at the lesion site. In addition, neurotrophins may affect their own availability to damaged neurons by altering the expression of the p75 and truncated trkB receptor.  相似文献   

15.
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 μm of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1–2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert aneurotropicinfluence on injured mature CNS neurons by increasing their axonal growth within a transplant.  相似文献   

16.
It has been suggested that altered retrograde neurotrophin support contributes to the phenotypic switch observed in BDNF expression in injured sensory neurons. Thus, modulatory influences of NGF and NT-3 on BDNF expression in injured adult rat DRG neurons were examined using in situ hybridization and immunohistochemical approaches. Quantitative analysis reveals a biphasic response to sciatic nerve injury, whereby in the first day following injury, BDNF expression is up-regulated in approximately 83% of injured neurons including all small neurons, and a larger pool of trkB expressing neurons than in intact. By 1 week and up to 3 weeks later expression is still seen in approximately 66% of injured neurons, but the characteristic phenotypic switch in the subpopulations expressing BDNF occurs, whereby expression in the trkA population is reduced and expression in trkB- and in trkC-positive neurons is elevated. NGF infusion results in elevated levels of BDNF expression in both intact and injured trkA-positive neurons, accompanied by reduced trkB expression. NT-3 acts in an opposite fashion effecting a down-regulation in BDNF expression in intact neurons and preventing/reducing the injury-associated increases in BDNF expression in both trkC- and nontrkC-expressing subpopulations of injured neurons. These effects suggest NGF can regulate BDNF expression in trkA-expressing neurons regardless of the axonal state and that elevated levels of BDNF may contribute to the down-regulation in trkB expression associated with these states. Furthermore, the findings demonstrate that NT-3 can act in an antagonistic fashion to NGF in the regulation of BDNF expression in intact neurons, and mitigate BDNF's expression in injured neurons.  相似文献   

17.
Neurotrophins and neurotrophin receptors play an important role in survival and growth of injured peripheral nerves. To study the injury-mediated neurotrophic response in autonomic nerves, we investigated changes in mRNA expression of neurotrophins and their receptors in the transected vagus nerve and nodose ganglion. Studies using in situ hybridization histochemistry showed that axotomy of the cervical vagus nerve resulted in increased expression of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and for TrkA, TrkB, and TrkC receptors in non-neuronal cells at both the proximal and distal segments of the transected cervical vagus nerve. Moreover, NGF protein was increased in the distal end, and NT-3 protein was increased in both the proximal and the distal ends of the transected nerve 3 days after axotomy. No change of p75(NTR) mRNA was detected in the transected vagus nerve. The induction of each neurotrophin and Trk receptor mRNA was apparent within 1 day after the axotomy and was sustained at least 14 days. By 45 days after the axotomy, a time when axonal reconnection with target tissue is made (integrity of the nerve-target connection was confirmed by the retrograde transport of FluoroGold from the stomach to vagal cell bodies), the levels of neurotrophin and Trk mRNAs in the vagus nerve declined to pre-axotomy levels. TrkA, TrkC, and p75(NTR) mRNA-containing vagal sensory neurons in the nodose ganglion were reduced in number after cervical vagotomy. Neurotrophin-mRNA-containing neurons were not found in the nodose ganglia from either intact or vagotomized rats. The axotomy-induced up-regulation of neurotrophins and Trk receptors mainly in the non-neuronal cells at or near the site of transection suggests that neurotrophins are involved in the survival and regeneration process of the vagus nerve after injury.  相似文献   

18.
The aim of this study was to approach the question of neuronal dependence on neurotrophins during embryonic development in mice in a way other than gene targeting. We employed amyogenic mouse embryos and fetuses that develop without any skeletal myoblasts or skeletal muscle and consequently lose motor and proprioceptive neurons. We hypothesized that if, in spite of the complete inability to maintain motor and proprioceptive neurons, the remaining spinal and dorsal root ganglia tissues of amyogenic fetuses still contain any of the neurotrophins, that particular neurotrophin alone is not sufficient for the maintenance of motor and proprioceptive neurons. Moreover, if the remaining spinal and dorsal root ganglia tissues still contain any of the neurotrophins, that particular neurotrophin alone may be sufficient for the maintenance of the remaining neurons (i.e., mostly non-muscle- and a few muscle-innervating neurons). To test the role of the spinal cord and dorsal root ganglia tissues in the maintenance of its neurons, we performed immunohistochemistry employing double-mutant and control tissues and antibodies against neurotrophins and their receptors. Our data suggested that: (a) during the peak of motor neuron cell death, the spinal cord and dorsal root ganglia distribution of neurotrophins was not altered; (b) the distribution of BDNF, NT-4/5, TrkB and TrkC, and not NT-3, was necessary for the maintenance of the spinal cord motor neurons; (c) the distribution of BDNF, NT-4/5 and TrkC, and not NT-3 and Trk B, was necessary for the maintenance of the DRG proprioceptive neurons; (d) NT-3 was responsible for the maintenance of the remaining neurons and glia in the spinal cord and dorsal root ganglia (possibly via TrkB).  相似文献   

19.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

20.
Dorsal roots have a limited regeneration capacity after transection. To improve nerve regeneration, the growth-promoting effects of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were evaluated. The proteins were continuously released by synthetic nerve guidance channels bridging a 4-mm gap in the transected dorsal root. Four weeks after lesion, the regenerated nerve cables were analyzed for the presence of myelinated and unmyelinated axons. While BDNF showed a limited effect on axonal regeneration (863 +/- 39 axons/regenerated nerve, n = 6), NGF (1843 +/- 482) and NT-3 (1495 +/- 449) powerfully promoted regeneration of myelinated axons compared to channels releasing the control protein bovine serum albumin (293 +/- 39). In addition, NGF, but not BDNF nor NT-3, had a potent effect on the regeneration of unmyelinated axons (NGF, 55 +/- 1.4; BDNF, 4 +/- 0.3; NT-3, 4.7 +/- 0.3 axons/100 microm(2); n = 6). The present study suggests that synthetic nerve guidance channels slowly and continuously releasing the neurotrophins NGF and NT-3 can overcome the limited regeneration of transected dorsal root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号