首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.  相似文献   

2.
3.
The present study investigates the induction of neurogenesis, reduction of apoptosis, and promotion of basic fibroblast growth factor (bFGF) expression as possible mechanisms by which treatment of stroke with bone marrow stromal cells (MSCs) improves neurological functional recovery. Additionally, for the first time, we treated cerebral ischemia in female rats with intraveneous administration of MSCs. Female rats were subjected to 2 hr of middle cerebral artery occlusion (MCAo), followed by an injection of 3 x 10(6) male (for Y chromosome labeling) rat MSCs or phosphate-buffered saline (PBS) into the tail vein 24 hr after MCAo. All animals received daily injection of bromodeoxyuridine (BrdU; 50 mg/kg, i.p.) for 13 days after treatment for identification of newly synthesized DNA. Animals were sacrificed at 14 days after MCAo. Behavioral tests (rotarod and adhesive-removal tests) were performed. In situ hybridization, immunohistochemistry, and terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) were performed to identify transplanted MSCs (Y chromosome), BrdU, bFGF, and apoptotic cells in the brain. Significant recovery of behavior was found in MSC-treated rats at 7 days in the somatosensory test and at 14 days in the motor test after MCAo compared with control, PBS-treated animals (P<.05). MSCs were found to survive and preferentially localize to the ipsilateral ischemic hemisphere. Significantly more BrdU-positive cells were located in the subventricular zone (P<.05), and significantly fewer apoptotic cells and more bFGF immunoreactive cell were found in the ischemic boundary area (P<.05) of MSC-treated rats than in PBS-treated animals. Here we demonstrate that intravenously administered male MSCs increase bFGF expression, reduce apoptosis, promote endogenous cellular proliferation, and improve functional recovery after stroke in female rats.  相似文献   

4.
L. H. Shen  Y. Li  M. Chopp 《Glia》2010,58(9):1074-1081
Bone marrow stromal cells (BMSCs) facilitate functional recovery in rats after focal ischemic attack. Growing evidence suggests that the secretion of various bioactive factors underlies BMSCs' beneficial effects. This study investigates the expression of glial cell derived neurotrophic factor (GDNF) in the ischemic hemisphere with or without BMSC administration. Adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 × 106 BMSCs (n = 11) or phosphate‐buffered saline (n = 10) into the tail vein 24 h later. Animals were sacrificed seven days later. Single and double immunohistochemical staining was performed to measure GDNF, Ki67, doublecortin, and glial fibrillary acidic protein expression as well as the number of apoptotic cells along the ischemic boundary zone (IBZ) and/or in the subventricular zone (SVZ). BMSC treatment significantly increased GDNF expression and decreased the number of apoptotic cells in the IBZ (P < 0.05). GDNF expression was colocalized with GFAP. Meanwhile, BMSCs increased the number of Ki‐67 positive cells and the density of DCX positive migrating neuroblasts (P < 0.05). GDNF expression was significantly increased in single astrocytes collected from animals treated with BMSCs, and in astrocytes cocultured with BMSCs after OGD (P < 0.05). Our data suggest that BMSCs increase GDNF levels in the ischemic hemisphere; the major source of GDNF protein is reactive astrocytes. We propose that the increase of GDNF in response to BMSC administration creates a hospitable environment for local cellular repair as well as for migrating neuroblasts from the SVZ, and thus contributes to the functional improvement. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchyrnal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.  相似文献   

6.
We investigated the treatment of remitting-relapsing experimental autoimmune encephalomyelitis (EAE) in mice with human bone marrow stromal cells (hBMSCs). hBMSCs were injected intravenously into EAE mice upon onset of paresis. Neurological functional tests were scored daily by grading clinical signs (score 0-5). Immunohistochemistry was performed to measure the transplanted hBMSCs, cell proliferation (bromodeoxyuridine, BrdU), oligodendrocyte progenitor cells (NG2), oligodendrocytes (RIP), and brain-derived neurotrophic factor (BDNF). The maximum clinical score and the average clinical scores were significantly decreased in the hBMSC-transplanted mice compared to the phosphate-buffered-saline-treated EAE controls, indicating a significant improvement in function. Demyelination significantly decreased, and BrdU(+) and BDNF(+) cells significantly increased in the hBMSC-treated mice compared to controls. Some BrdU(+) cells were colocalized with NG2(+) and RIP(+) immunostaining. hBMSCs also significantly reduced the numbers of vessels containing inflammatory cell infiltration. These data indicate that hBMSC treatment improved functional recovery after EAE in mice, possibly, via reducing inflammatory infiltrates and demyelination areas, stimulating oligodendrogenesis, and by elevating BDNF expression.  相似文献   

7.
We investigated intra-arterially administered autologous bone marrow mononuclear cells (MNCs) in rats with acute ischemic stroke. Long Evans rats (2 to 3 months or 12 months old) underwent tandem reversible common carotid artery (CCA)/middle cerebral artery (MCA) occlusion (CCAo/MCAo) for 3 h and then 24 h later underwent tibial bone marrow harvest. Ten million or 4 million cells were re-injected by an intra-carotid infusion. Control animals underwent marrow needle insertion and then saline injection into the carotid artery. Animals were assessed on a battery of neurological tests. MNCs in the ischemic brain were tracked using Q-dot nanocrystal labeling. Infarct volume and cytokines in the ischemia-affected brain were analyzed. Cell-treated animals in the younger and older groups showed improvement from 7 to 30 days after stroke compared with vehicle-treated animals. MNCs significantly reduced infarct volume compared with saline. There was a significant reduction in tumor necrosis factor-α, interleukin-1α (IL-1α), IL-β, IL-6, and a significant increase in IL-10 in injured brains harvested from the cell-treated groups compared with saline controls. Labeled MNCs were found in the peri-infarcted area at 1 h and exponentially decreased over the ensuing week after injection. Autologous bone marrow MNCs can be safely harvested from rodents after stroke, migrate to the peri-infarct area, enhance recovery, and modulate the post-ischemic inflammatory response.  相似文献   

8.
Bone marrow stromal cells (MSCs) improve neurologic recovery after middle cerebral artery occlusion (MCAo). To examine whether in vivo blockage of the endogenous sonic hedgehog (Shh) pathway affects grafted MSC-induced neurologic benefits, MCAo mice were administered: vehicle (control); cyclopamine (CP)— a specific Shh pathway inhibitor; MSC; and MSC and cyclopamine (MSC-CP). Neurologic function was evaluated after MCAo. Electron microscopy and immunofluorescence staining were employed to measure synapse density, protein expression of tissue plasminogen activator (tPA), and Shh in parenchymal cells in the ischemic boundary zone (IBZ), respectively. Marrow stromal cell treatment significantly enhanced functional recovery after ischemia, concurrent with increases of synaptophysin, synapse density, and myelinated axons along the IBZ, and significantly increased tPA and Shh expression in astrocytes and neurons compared with control. After treatment with MSC-CP or CP, the above effects were reversed. Co-culture of MSCs with cortical neurons confirmed the effect of Shh on MSC-mediated neurite outgrowth. Our data support the hypothesis that the Shh pathway mediates brain plasticity via tPA and thereby functional recovery after treatment of stroke with MSCs.  相似文献   

9.
Shen LH  Li Y  Gao Q  Savant-Bhonsale S  Chopp M 《Glia》2008,56(16):1747-1754
The glial scar, a primarily astrocytic structure bordering the infarct tissue inhibits axonal regeneration after stroke. Neurocan, an axonal extension inhibitory molecule, is up-regulated in the scar region after stroke. Bone marrow stromal cells (BMSCs) reduce the thickness of glial scar wall and facilitate axonal remodeling in the ischemic boundary zone. To further clarify the role of BMSCs in axonal regeneration and its underlying mechanism, the current study focused on the effect of BMSCs on neurocan expression in the ischemic brain. Thirty-one adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 x 10(6) rat BMSCs (n = 16) or phosphate-buffered saline (n = 15) into the tail vein 24 h later. Animals were sacrificed at 8 days after stroke. Immunostaining analysis showed that reactive astrocytes were the primary source of neurocan, and BMSC-treated animals had significantly lower neurocan and higher growth associated protein 43 expression in the penumbral region compared with control rats, which was confirmed by Western blot analysis of the brain tissue. To further investigate the effects of BMSCs on astrocyte neurocan expression, single reactive astrocytes were collected from the ischemic boundary zone using laser capture microdissection. Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n = 4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n = 3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes.  相似文献   

10.
OBJECTIVE: To test the effect of i.v.-injected human bone marrow stromal cells (hMSC) on neurologic functional deficits after stroke in rats. METHODS: Rats were subjected to transient middle cerebral artery occlusion and IV injected with 3 x 10(6) hMSC 1 day after stroke. Functional outcome was measured before and 1, 7, and 14 days after stroke. Mixed lymphocyte reaction and the development of cytotoxic T lymphocytes measured the immune rejection of hMSC. A monoclonal antibody specific to human cellular nuclei (mAb1281) was used to identify hMSC and to measure neural phenotype. ELISA analyzed neurotrophin levels in cerebral tissue from hMSC-treated or nontreated rats. Bromodeoxyuridine injections were used to identify newly formed cells. RESULTS: Significant recovery of function was found in rats treated with hMSC at 14 days compared with control rats with ischemia. Few (1 to 5%) hMSC expressed proteins phenotypic of brain parenchymal cells. Brain-derived neurotrophic factor and nerve growth factor significantly increased, and apoptotic cells significantly decreased in the ischemic boundary zone; significantly more bromodeoxyuridine-reactive cells were detected in the subventricular zone of the ischemic hemisphere of rats treated with hMSC. hMSC induced proliferation of lymphocytes without the induction of cytotoxic T lymphocytes. CONCLUSION: Neurologic benefit resulting from hMSC treatment of stroke in rats may derive from the increase of growth factors in the ischemic tissue, the reduction of apoptosis in the penumbral zone of the lesion, and the proliferation of endogenous cells in the subventricular zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号