首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Left temporal-parietal white matter structure is consistently associated with reading abilities in children. A small number of longitudinal studies show that development of this area over time is altered in children with impaired reading. However, it remains unclear how brain developmental patterns relate to specific reading skills such as fluency, which is a critical part of reading comprehension. Here, we examined white matter development trajectories in children with dysfluent reading (20 dysfluent and inaccurate readers, 36 dysfluent and accurate readers) compared to non-impaired readers (n = 14) over 18 months. We found typical age-related increases of fractional anisotropy (FA) in bilateral temporal-parietal areas in non-impaired readers, but a lack of similar changes in dysfluent readers. We also found steeper decreases of mean diffusivity (MD) in the right corona radiata and left uncinate fasciculus in dysfluent inaccurate readers compared to dysfluent accurate readers. Changes in diffusion parameters were correlated with changes in reading scores over time. These results suggest delayed white matter development in dysfluent readers, and show maturational differences between children with different types of reading impairment. Overall, these results highlight the importance of considering developmental trajectories, and demonstrate that the window of plasticity may be different for different children.  相似文献   

2.
Reading is a learned skill crucial for educational attainment. Children from families of lower socioeconomic status (SES) tend to have poorer reading performance and this gap widens across years of schooling. Reading relies on the orchestration of multiple neural systems integrated via specific white‐matter pathways, but there is limited understanding about whether these pathways relate differentially to reading performance depending on SES background. Kindergarten white‐matter FA and second‐grade reading outcomes were investigated in an SES‐diverse sample of 125 children. The three left‐hemisphere white‐matter tracts most associated with reading, and their right‐hemisphere homologs, were examined: arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), and inferior longitudinal fasciculus (ILF). There was a significant and positive association between SES and fractional anisotropy (FA) in the bilateral ILF in kindergarten. SES moderated the association between kindergarten ILF and second grade reading performance, such that it was positive in lower‐SES children, but not significant in higher‐SES children. These results have implications for understanding the role of the environment in the development of the neural pathways that support reading.  相似文献   

3.
Studies of dyslexia using diffusion tensor imaging (DTI) have reported fractional anisotropy (FA) differences in left inferior frontal gyrus (LIFG) and left temporo-parietal white matter, suggesting that impaired reading is associated with atypical white matter microstructure in these regions. These anomalies might reflect abnormalities in the left perisylvian language network, long implicated in dyslexia. While DTI investigations frequently report analyses on multiple tensor-derived measures (e.g., FA, orientation, tractography), it is uncommon to integrate analyses to examine the relationships between atypical findings. For the present study, semi-automated techniques were applied to DTI data in an integrated fashion to examine white matter microstructure in 14 children with dyslexia and 17 typically developing readers (ages 7-16 years). Correlations of DTI metrics (FA and fiber orientation) to reading skill (accuracy and speed) and to probabilistic tractography maps of the left perisylvian language tracts were examined. Consistent with previous reports, our findings suggest FA decreases in dyslexia in LIFG and left temporo-parietal white matter. The LIFG FA finding overlaps an area showing differences in fiber orientation in an anterior left perisylvian language pathway. Additionally, a positive correlation of FA to reading speed was found in a posterior circuit previously associated with activation on functional imaging during reading tasks. Overall, integrating results from several complementary semi-automated analyses reveals evidence linking atypical white matter microstructure in dyslexia to atypical fiber orientation in circuits implicated in reading including the left perisylvian language network.  相似文献   

4.
Children treated with cranial irradiation for brain tumors have reduced white matter volume and deficits in reading ability. This study prospectively examined the relationship between reading and white matter integrity within this patient group. Patients (n = 54) were treated with post-surgical radiation followed by 4 cycles of high-dose chemotherapy with stem cell support. At 12 months post-diagnosis, all patients completed a neuropsychology evaluation and a diffusion tensor imaging (DTI) exam. White matter integrity was determined through measures of fractional anisotropy (FA). Significant group differences in FA were found between above average readers and below average readers within the left and right posterior limb of the internal capsule, and right knee of the internal capsule with a trend within the left temporaloccipital region. The integrity of the white matter in these regions may affect communication among visual, auditory, and language cortical areas that are engaged during reading.  相似文献   

5.
Diffusion tensor imaging (DTI) was used to investigate the association between variation in white matter microstructure and individual differences in reading skill within children. Unlike previous DTI studies of reading, our sample examined children in both the average reading range as well as several children in the performance range of reading disability (RD). Results replicate previous findings of a strong correlation between fractional anisotropy (FA) values in a left temporo-parietal white matter region and standardized reading scores of typically developing children. Furthermore, FA values in this same region accounted for differences between children scoring in the average range and children scoring in the RD range, suggesting that the role of white matter tract microstructure is best characterized as an extreme range on a continuum of typical variation. Furthermore, significant correlations between working memory and frontal white matter tract regions were present in this same population, yet were demonstrated to be independent of the relationships found between reading and more posterior regions. Results form a "correlational double dissociation" that demonstrates domain specificity in the influence of white matter tract structures to individual differences in cognitive performance.  相似文献   

6.
Aim We used diffusion tensor imaging to investigate the association between white‐matter integrity and reading ability in a cohort of 28 children. Nineteen preterm children (14 males, five females; mean age 11y 11mo [SD 1y 10mo], mean gestational age 30.5wks (SD 3.2), mean birthweight was 1455g [SD 625]); and nine term children (five males, four females; mean age 12y 8mo [SD 2y 5mo], mean gestational age 39.6wks (SD 1.2), and mean birthweight 3877g [SD 473]). Method We tested whether fractional anisotropy in a left hemisphere temporoparietal region and in the corpus callosum correlates with birthweight and scores on the following three subtests of the Woodcock‐Johnson III Tests of Achievement: word identification, word attack, and passage comprehension. Results Preterm children had lower reading scores than a comparison group for all reading subtests (p<0.05). We found significant correlations between birthweight and fractional anisotropy in the whole corpus callosum (p=0.001), and between fractional anisotropy and reading skill in the genu (p=0.001) and body (p=0.001) of the corpus callosum. The correlation between reading skill and fractional anisotropy in a left temporoparietal region previously associated with reading disability was not significant (p=0.095). Interpretation We conclude that perinatal white‐matter injury of the central corpus callosum may have long‐term developmental implications for reading performance.  相似文献   

7.
Few researchers agree about the relationship between fronto–temporo–parietal white matter microstructure and reading skills. Unlike many previous reports, which only measured fractional anisotropy, we have also measured macroscopic volume (regional white matter tract volume) and three microstructural indices (axial, radial, and mean diffusivity) to increase interpretability of our findings. We examined the reading‐related skills and white matter structure in 10 adolescents and adults with a history of poor reading and 20 age‐matched typical readers. We applied a diffusion tensor imaging atlas‐based algorithm to major white matter pathways. The relation of white matter structural indices to reading group, hemisphere, and reading‐related skill was analyzed using linear models. White matter microstructural indices were related to performance on a sublexical decoding task, but the relations between particular microstructural indices and sublexical decoding ability and reading group were different for association (i.e., cortical–cortical) and projection (i.e., subcortical–cortical) white matter pathways. Changes in projection pathways were consistent with alterations in white matter organization and axonal size, whereas changes in association pathways were consistent with alternations in pathway complexity. Changes in macrostructure paralleled changes in microstructure. We conclude that the relations between several microstructural indices and factors related to reading ability are different for association and projection pathways. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
In the human brain, myelination of axons continues until early adulthood and is thought to be important for the development of cognitive functions during childhood. We used diffusion tensor MR imaging and calculated fractional anisotropy, an indicator of myelination and axonal thickness, in children aged between 8 and 18 years. Development of working memory capacity was positively correlated with fractional anisotropy in two regions in the left frontal lobe, including a region between the superior frontal and parietal cortices. Reading ability, on the other hand, was only correlated with fractional anisotropy in the left temporal lobe, in the same white matter region where adults with reading disability are known to have lower fractional anisotropy. Both the temporal and the frontal regions were also correlated with age. These results show that maturation of white matter is an important part of brain maturation during childhood, and that maturation of relatively restricted regions of white matter is correlated with development of specific cognitive functions.  相似文献   

9.
Developmental dyslexia is one of the most common neuropsychological disorders in children and adults. Only few data are available on the pathomechanisms of this specific dysfunction, assuming - among others - that dyslexia might be a disconnection syndrome of anterior and posterior brain regions involved in phonological and orthographic aspects of the reading process, as well as in the integration of phonemes and graphemes. Therefore, diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) were used to verify the hypothesis of altered white and gray matter structure in German dyslexic adults. DTI revealed decreased fractional anisotropy (FA) in bilateral fronto-temporal and left temporo-parietal white matter regions (inferior and superior longitudinal fasciculus). Significant correlations between white matter anisotropy and speed of pseudoword reading were found. In dyslexics, gray matter volumes (as measured by VBM) were reduced in the superior temporal gyrus of both hemispheres. So far, our results, based on a combined analysis of white and gray matter abnormalities, provide exceedingly strong evidence for a disconnection syndrome or dysfunction of cortical areas relevant for reading and spelling. Thus, we suggest that this imbalance of neuronal communication between the respective brain areas might be the crucial point for the development of dyslexia.  相似文献   

10.
Inconsistent differences in the corpus callosum (CC) structure between dyslexic readers (DRs) and typical readers (TRs) have been reported. We examine differences in CC splenium microstructure and the association of splenium microstructure with reading-related skills. Nine DRs and 18 TRs completed a reading skills battery and diffusion tensor imaging. DRs had higher splenium fractional anisotropy (FA) and axial diffusivity (LA) as compared with TRs. Retrieval of orthographic information from the language lexicon was negatively associated with FA and LA within both reading groups. Phonological awareness was positively associated with splenium FA and LA in TRs but not DRs. This study suggests two white matter pathways that may be differentially associated with reading skills in the CC splenium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号