首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant lateral temporal lobe epilepsy previously has been linked to chromosome 10q22-q24, and recently mutations in the LGI1 gene (Leucine-rich gene, Glioma Inactivated) have been found in some autosomal dominant lateral temporal lobe epilepsy families. We have now identified a missense mutation affecting a conserved cysteine residue in the extracellular region of the LGI1 protein. The C46R mutation is associated with autosomal dominant lateral temporal lobe epilepsy in a large Norwegian family showing unusual clinical features like short-lasting sensory aphasia and auditory symptoms.  相似文献   

2.
PURPOSE: Three forms of idiopathic partial epilepsy with autosomal dominant inheritance have been described: (a) autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE); (b) autosomal dominant lateral temporal epilepsy (ADLTE) or partial epilepsy with auditory features (ADPEAF); and (c) familial partial epilepsy with variable foci (FPEVF). Here we describe linkage analysis in a Dutch four-generation family with epilepsy fulfilling criteria of both ADNFLE and FPEVF. METHODS: Clinical characteristics and results of EEG, computed tomography (CT), and magnetic resonance imaging (MRI) were evaluated in a family with autosomal dominantly inherited partial epilepsy with apparent incomplete penetrance. Linkage analysis was performed with markers of the ADNFLE (1p21, 15q24, 20q13.3) and FPEVF (2q, 22q11-q12) loci. RESULTS: Epilepsy was diagnosed in 10 relatives. Age at onset ranged from 3 months to 24 years. Seizures were mostly tonic, tonic-clonic, or hyperkinetic, with a wide variety in symptoms and severity. Most interictal EEGs showed no abnormalities, but some showed frontal, central, and/or temporal spikes and spike-wave complexes. From two patients, an ictal EEG was available, showing frontotemporal abnormalities in one and frontal and central abnormalities in the other. Linkage analysis with the known loci for ADNFLE and FPEVF revealed linkage to chromosome 22q in this family. CONCLUSIONS: The clinical characteristics of this family fulfilled criteria of both ADNFLE and FPEVF. The frequent occurrence of seizures during daytime and the observation of interictal EEG abnormalities originating from different cortical areas were more in agreement with FPEVF. The observed linkage to chromosome 22q supported the diagnosis of FPEVF and confirmed that this locus is responsible for this syndrome.  相似文献   

3.
PURPOSE: Autosomal dominant partial epilepsy with auditory features (ADPEAF) is a rare form of nonprogressive lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. The gene predisposing to this syndrome was localized to a 10-cM region on chromosome 10q24. We assessed clinical features and linkage evidence in four newly ascertained families with ADPEAF, to refine the clinical phenotype and confirm the genetic localization. METHODS: We genotyped 41 individuals at seven microsatellite markers spanning the previously defined 10-cM minimal genetic region. We conducted two-point linkage analysis with the ANALYZE computer package, and multipoint parametric and nonparametric linkage analyses as implemented in GENEHUNTER2. RESULTS: In the four families, the number of individuals with idiopathic epilepsy ranged from three to nine. Epilepsy was focal in all of those with idiopathic epilepsy who could be classified. The proportion with auditory symptoms ranged from 67 to 100%. Other ictal symptoms also were reported; of these, sensory symptoms were most common. Linkage analysis showed a maximum 2-point LOD score of 1.86 at (theta=0.0 for marker D10S603, and a maximum multipoint LOD score of 2.93. CONCLUSIONS: These findings provide strong confirmation of linkage of a gene causing ADPEAF to chromosome 10q24. The results suggest that the susceptibility gene has a differential effect on the lateral temporal lobe, thereby producing the characteristic clinical features described here. Molecular studies aimed at the identification of the causative gene are underway.  相似文献   

4.
Evidence that febrile seizures have a strong genetic predisposition has been well documented. In families of probands with multiple febrile convulsions, an autosomal dominant inheritance with reduced penetrance is suspected. Four candidate loci for febrile seizures have been suggested to date; FEB1 on 8q13-q21, FEB2 on 19p, FEB3 on 2q23-q24, and FEB4 on 5q14-15. A missense mutation was identified in the voltage-gated sodium (Na(+))-channel beta 1 subunit gene, SCN1B at chromosome 19p13.1 in generalized epilepsy with the febrile seizures plus type 1 (GEFS+1) family. Several missense mutations of the (Na(+))-channel alpha 1 subunit (Nav1.1) gene, SCN1A were also identified in GEFS+2 families at chromosome 2q23-q24.3. The aim of this report is precisely to describe the phenotypes of Japanese patients with novel SCN1A mutations and to reevaluate the entity of GEFS+. Four family members over three generations and one isolated (phenotypically sporadic) case with SCN1A mutations were clinically investigated. The common seizure type in these patients was febrile and afebrile generalized tonic-clonic seizures (FS+). In addition to FS+, partial epilepsy phenotypes were suspected in all affected family members and electroencephalographically confirmed in three patients of two families. GEFS+ is genetically and clinically heterogeneous, and associated with generalized epilepsy and partial epilepsy as well. The spectrum of GEFS+ should be expanded to include partial epilepsies and better to be termed autosomal dominant epilepsy with febrile seizures plus (ADEFS+).  相似文献   

5.
We describe a new syndrome of familial temporal lobe epilepsy in 38 individuals from 13 unrelated white families. The disorder was first identified in 5 concordant monozygotic twin pairs as part of a large-scale twin study of epilepsy. When idiopathic partial epilepsy syndromes were excluded, the 5 pairs accounted for 23% of monozygotic pairs with partial epilepsies, and 38% of monozygotic pairs with partial epilepsy and no known etiology. Seizure onset for twin and nontwin subjects usually occurred during adolescence or early adult life. Seizure types were simple partial seizures with psychic or autonomic symptoms, infrequent complex partial seizures, and rare secondarily generalized seizures. Electroencephalograms revealed sparse focal temporal interictal epileptiform discharges in 22% of subjects. Magnetic resonance images appeared normal. Nine affected family members (24%) had not been diagnosed prior to the study. Pedigree analysis suggested autosomal dominant inheritance with age-dependent penetrance. The estimated segregation ratio was 0.3, indicating an overall penetrance of 60% assuming autosomal dominant inheritance. The mild and often subtle nature of the symptoms in some family members may account for lack of prior recognition of this common familial partial epilepsy. This disorder has similarities to the El mouse, a genetic model of temporal lobe epilepsy with a major gene on mouse chromosome 9, which is homologous with a region on human chromosome 3.  相似文献   

6.
We report a clinical and genetic study of a French family among whom febrile convulsions (FC) are associated with subsequent temporal lobe epilepsy (TLE) in the same individual, without magnetic resonance imaging-identifiable hippocampal abnormalities. Linkage analyses excluded the loci FEB1 and FEB2, previously implicated in FC; the GEFS+1 locus responsible for generalized epilepsy with febrile seizures plus; and the locus implicated in lateral temporal lobe epilepsy. After scanning the entire genome, significant lod scores (>3) for markers on 18qter and suggestive lod scores (>2) for markers on 1q25-q31 were obtained. An analysis of the haplotypes at these two loci supported the hypothesis that two genes segregated with the phenotype. All patients shared common haplotypes for both 1q25-q31 and 18qter chromosomes. All but one unaffected at-risk individuals carried only one, or none, of the disease haplotypes. Under the assumption of digenic inheritance, haplotype reconstruction defined a 26 cM interval on chromosome 1 and a 10 cM interval on chromosome 18. This family suggests that the association between FC and TLE may be observed in the absence of hippocampal structural abnormalities and that they may have, in some cases, a common genetic basis.  相似文献   

7.
BACKGROUND: Familial partial epilepsy with variable foci (FPEVF) is an autosomal dominant syndrome characterized by partial seizures originating from different brain regions in different family members in the absence of detectable structural abnormalities. A gene for FPEVF was mapped to chromosome 22q12 in two distantly related French-Canadian families. METHODS: We describe the clinical features and performed a linkage analysis in a Spanish kindred and in a third French-Canadian family distantly related to the original pedigrees. RESULTS: Onset of seizures was typically in middle childhood, and attacks were usually easy to control. Seizure semiology varied among family members but was constant for each individual. In some, a pattern of nocturnal frontal lobe seizures led to consideration of the diagnosis of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). The Spanish family was mapped to chromosome 22q (multipoint lod score, 3.4), and the new French-Canadian family had a multipoint lod score of 2.97 and shared the haplotype of the original French-Canadian families. CONCLUSIONS: Identification of the various forms of familial partial epilepsy is challenging, particularly in small families, in which insufficient individuals exist to identify a specific pattern. We provide clinical guidelines for this task, which will eventually be supplanted by specific molecular diagnosis. We confirmed linkage of FPEVF to chromosome 22q12 and redefined the region to a 5.2-Mb segment of DNA.  相似文献   

8.
Familial partial epilepsy with variable foci (FPEVF) is an autosomal dominant form of partial epilepsy characterized by the presence of epileptic seizures originating from different cerebral lobes in different members of the same family. Linkage to chromosomes 22q12 and 2q36 has been reported, although only six families have been published. We studied a new FPEVF family including nine affected individuals. The phenotype in this family was similar to that previously described and consisted of nocturnal and daytime seizures with semiology suggesting a frontal lobe origin. A video‐EEG (electroencephalography) recording of the proband’s seizures is presented and revealed hyperkinetic seizures of frontal lobe origin preceded by left frontal spikes. We excluded linkage to chromosome 2q36 and found a suggestion of linkage to chromosome 22q12 with a lod score of 2.64 (θ = 0) for marker D22S689.  相似文献   

9.
PURPOSE: To report the clinical and genetic study of a new family with autosomal dominant partial epilepsy with auditory features (ADPEAF). METHODS: All the living affected members underwent a full clinical, neurophysiological, and magnetic resonance imaging (MRI) study. Genetic analysis was performed by typing their DNA with seven microsatellite markers previously found to cosegregate with ADPEAF on chromosome 10q24. RESULTS: The three living affected members had a childhood onset of rare and drug-responsive tonic-clonic seizures constantly preceded by a humming sensation. Routine and sleep electroencephalograms revealed rare and inconstant focal abnormalities over both temporal regions. MRI detected atrophy with increased T2 signal in the subcortical lateral portion of the right temporal lobe in one case. Analysis of 10q24 polymorphic alleles showed the same haplotype in all three affected members but different alleles in unaffected individuals. CONCLUSIONS: ADPEAF is a distinct condition with homogeneous clinical features. Genetic findings are consistent with linkage of ADPEAF to chromosome 10q24.  相似文献   

10.
We report a large family with a temporal partial epilepsy syndrome inherited in an autosomal dominant mode, with a penetrance of about 80%. This epilepsy syndrome is benign, with age of onset in the second or third decade of life. It is characterized by rare partial seizures, usually secondarily generalized, arising mostly during sleep, without postictal confusion. There is a good response to the antiepileptic therapy but often a recurrence of seizures after drug withdrawal. The partial component, visual (lights, colors, and simple figures) or auditory (buzzing or “humming like a machine”), the existence of temporo-occipital interictal electroencephalographic epileptiform abnormalities, and the hypoperfusion in the temporal lobe detected by interictal hexamethylpropyleneamine oxime–technetium 99m (HMPAO-Tc99m) single-photon emission computed tomography, strongly suggest a lateral temporal lobe origin. The genetic analysis found linkage to chromosome 10q, and localized a gene in a 15-cM interval that overlaps a previously found localization for partial epilepsy in a large three-generation family. This syndrome could be called autosomal dominant lateral temporal epilepsy. Ann Neurol 1999;45:182–188  相似文献   

11.
Winawer MR  Ottman R  Hauser WA  Pedley TA 《Neurology》2000,54(11):2173-2176
The authors previously reported linkage to chromosome 10q22-24 for autosomal dominant partial epilepsy with auditory features. This study describes seizure semiology in the original linkage family in further detail. Auditory hallucinations were most common, but other sensory symptoms (visual, olfactory, vertiginous, and cephalic) were also reported. Autonomic, psychic, and motor symptoms were less common. The clinical semiology points to a lateral temporal seizure origin. Auditory hallucinations, the most striking clinical feature, are useful for identifying new families with this synome.  相似文献   

12.
PURPOSE: Mutations in the leucine rich, glioma inactivated gene (LGI1) were recently described in a small number of families with autosomal dominant lateral temporal epilepsy (ADLTE). ADLTE is characterized by partial seizures with symptoms suggestive of a lateral temporal onset, including frequent auditory aura. Here we report the results of clinical and genetic analyses of two newly identified families with ADTLE. METHODS: We identified two families whose seizure semiology was suggestive of ADLTE. Evaluation included a detailed history and neurologic examination, as well as collection of DNA. The coding sequence of the LGI1 gene from affected subjects from both families was analyzed for evidence of mutation. RESULTS: Each patient had a history of partial seizures, often with secondary generalization earlier in the course. Auditory aura was reported by approximately two thirds of affected patients in each pedigree. Novel mutations in LGI1 were detected in both families. A heterozygous single-nucleotide deletion at position 329 (del 329C) was detected in affected individuals from one family, whereas patients from the second family had a nonsynonymous variation, corresponding to C435G. CONCLUSIONS: We identified two novel mutations in the LGI1 gene. The phenotype of these two families was similar to that of other kindreds with ADLTE, as auditory aura was absent in one third of affected individuals. Our results further support that LGI1 mutations should be considered in patients with a history of partial seizures if the semiology of seizures is consistent with the onset in the lateral temporal lobe.  相似文献   

13.
BACKGROUND: Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is caused by mutations in the alpha4 subunit of the neuronal nicotinic acetylcholine receptor (CHRNA4) gene, mapping on chromosome 20q13.2. A second ADNFLE locus was mapped on chromosome 15q24. OBJECTIVE: To report a new third ADNFLE locus on chromosome 1 in a large Italian family. METHODS: The authors performed a clinical and genetic study in a large, three-generation ADNFLE family from southern Italy, including eight affected individuals and three obligate carriers. RESULTS: The age at onset of seizures was around 9 years of age and all affected individuals manifested nocturnal partial seizures of frontal lobe origin. Interictal awake and sleep EEG recordings showed no definite epileptiform abnormalities in most patients. Ictal video-EEG showed that the attacks were partial seizures with a frontal lobe semiology. Intellectual and neurologic examinations, and brain CT or MRI results were always normal. Carbamazepine was effective in all treated patients. Exclusion mapping of the known loci linked to ADNFLE-ENFL1, and ENFL2, on chromosomes 20q13.2 and 15q24-was performed on the pedigree before starting the genome-wide linkage analysis. The whole genome scan mapping allowed the identification of a new ADNFLE locus spanning the pericentromeric region of chromosome 1. CONCLUSIONS: The authors provided evidence for a third locus associated to autosomal dominant nocturnal frontal lobe epilepsy on chromosome 1. Among the known genes mapping within this critical region, the ss2 subunit of the nicotinic receptor (CHRNB2) represents the most obvious candidate.  相似文献   

14.
Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant condition characterized by cortical tremor and generalized seizures, mapped on chromosome 8q24 by Japanese authors. Recently the same phenotype also was reported in European families, with linkage on chromosome 2. We present a new family with suggestion of linkage to chromosome 2p11.1-2q12.2 (lod score value, 1.55). This observation would confirm that BAFME is a worldwide, genetically heterogeneous condition, probably with Japanese families linked to 8q24 and European families to 2p11.1-q12.2.  相似文献   

15.
PURPOSE: Autosomal dominant lateral temporal lobe epilepsy (ADLTLE) is a rare familial epilepsy with onset in adolescence or early adulthood, associated with mutations of LGI1 in most families. We describe the clinical, neuropsychological, and molecular genetic study of a new ADLTLE Italian family. METHODS: A four-generation family from Sardinia was studied. Clinical, neuropsychological, and genetic analysis were performed in eight living affected family members. RESULTS: Nine family members had seizures over four generations; four of them had auditory auras and aphasia followed by secondarily generalized tonic-clonic seizures (SGTCs). One individual in addition had visual symptoms, and one family member had only vertigo followed by SGTCs. The side of seizure onset could not be determined in these five patients with focal seizures. The proband had febrile and afebrile tonic-clonic seizures. Two family members had only febrile seizures. Inheritance was autosomal dominant with 59% penetrance. Genetic molecular analysis showed a new LGI1 missense mutation causing a Leu154Pro substitution in six affected and one unaffected individuals. Dichotic listening performance was abnormal in four affected individuals compared with controls. Fluency and lexical abilities also were pathological in three patients. These findings showed that in patients, the left temporal lobe was less specialized in the auditory processing function than in controls. CONCLUSIONS: In this ADLTLE family, both seizure semiology and neuropsychological findings point to a lateral temporal lobe dysfunction. The newly identified LGI1 mutation might underlie both the seizure disorder and the neuropsychological deficits.  相似文献   

16.
Epilepsy and electroencephalographic (EEG) anomalies are common in subjects carrying chromosomal aberrations. We report clinical and EEG investigations on 13 patients carrying chromosome 2 anomalies, including two patients with inversions, six with translocations, two with partial duplications and three with interstitial deletion syndromes. Epilepsy and/or EEG anomalies were found in one patient with a chromosome 2 translocation, in both of those carrying partial duplications and in all three with interstitial deletion syndromes. No epilepsy or EEG anomalies were detected in the remaining patients. CONCLUSIONS: Epilepsy may be associated with chromosome 2 aberrations. Gross rearrangements involving the long arm of chromosome 2 might be more often associated with epilepsy than those involving the short arm. The association of epilepsy with chromosome 2 duplications is less clear. In particular, our observations and a review of the literature appear to suggest that a strict relationship between epilepsy and interstitial deletions involving the 2q24-q31 region. In the latter disorder tonic and focal seizures occur early in life. Generalized and focal myoclonic jerks tend to appear in infancy and are subsequently followed by seizures mixed in type. Seizures usually persist up to late childhood and are drug resistant. Further studies are necessary to better define the electroclinical patterns of patients carrying deletions in 2q24-q31. These may help to direct systematic study of this--probably underestimated--cause of severe epilepsy.  相似文献   

17.
PURPOSE: Idiopathic generalized epilepsy (IGE) accounts for approximately 20% of all epilepsies and affects about 0.2% of the general population. The etiology of IGE is genetically determined, but the complex pattern of inheritance suggests an involvement of a large number of susceptibility genes. The objective of the present study was to explore the genetic architecture of common IGE syndromes and to dissect out susceptibility loci predisposing to absence or myoclonic seizures. METHODS: Genome-wide linkage scans were performed in 126 IGE-multiplex families of European origin ascertained through a proband with idiopathic absence epilepsy or juvenile myoclonic epilepsy. Each family had at least two siblings affected by IGE. To search for seizure type-related susceptibility loci, linkage analyses were carried out in family subgroups segregating either typical absence seizures or myoclonic and generalized tonic-clonic seizures on awakening. RESULTS: Nonparametric linkage scans revealed evidence for complex and heterogeneous genetic architectures involving linkage signals at 5q34, 6p12, 11q13, 13q22-q31, and 19q13. The signal patterns differed in their composition, depending on the predominant seizure type in the families. CONCLUSIONS: Our results are consistent with heterogeneous configurations of susceptibility loci associated with different IGE subtypes. Genetic determinants on 11q13 and 13q22-q31 seem to predispose preferentially to absence seizures, whereas loci on 5q34, 6p12, and 19q13 confer susceptibility to myoclonic and generalized tonic-clonic seizures on awakening.  相似文献   

18.
PURPOSE: Choreoacanthocytosis (ChAc) is an autosomal recessive disorder caused by mutations in VPS13A on chromosome 9q21 and characterized by neurodegeneration and red cell acanthocytosis. Seizures are not uncommon in ChAc but have not been well characterized in the literature. We report two ChAc families in which patients presented with temporal lobe epilepsy. METHODS: Detailed medical and family histories were obtained. EEG, video-telemetry, brain magnetic resonance imaging (MRI) with volumetric studies of amygdala and hippocampus, as well as neuropsychological testing were performed. Blood smears were examined for acanthocytosis. Mutation analysis of VPS13A was carried out in five patients. RESULTS: Six patients in three sibships were initially seen with seizures. Age at seizure onset ranged from 22 to 38 years. Seizures preceded other clinical manifestations of ChAc by < or = 15 years. The epileptic aura consisted of a sensation of déjà-vu, fear, hallucinations, palpitations, or vertigo. EEG with video-telemetry showed epileptiform discharges originating either from one or both temporal lobes. Epilepsy was generally well controlled, but some patients had periods of increased seizure frequency requiring treatment with multiple antiepileptic drugs (AEDs). Both families shared a deletion of exons 70-73 of VPS13A, extending to exons 6-7 of GNA14. CONCLUSIONS: Temporal lobe epilepsy may be the presenting feature of ChAc and may delay its diagnosis. Epilepsy in ChAc patients represents a challenge, because seizures may at times be difficult to control, and some AEDs may worsen the involuntary movements. Mutations in VPS13A or GNA14 or both may be associated with clinical features of temporal lobe epilepsy.  相似文献   

19.
Benign familial infantile seizures are an autosomal dominant epilepsy disorder that is characterized by convulsions, with onset at age 3 to 12 months and a favorable outcome. Benign familial infantile seizures have been linked to chromosome 19q whereas infantile convulsions and choreoathetosis syndrome, in which benign familial infantile seizure is associated with paroxysmal choreoathetosis, has been linked to chromosome 16p 12-q12. Many additional families from diverse ethnic backgrounds have similar syndromes that have been linked to the chromosome 16 infantile convulsions and choreoathetosis syndrome region. Moreover, in one large pedigree with paroxysmal kinesiogenic dyskinesias only, the syndrome has also been linked to the same genomic area. Families with pure benign familial infantile seizures may be linked to chromosome 16 as well. In this study, we present a series of 19 families and 24 otherwise healthy infants with benign familial infantile seizures. Two of these families include members affected with benign familial infantile seizures and paroxysmal choreoathetosis. We included patients with normal neurologic examinations, who started having simple partial seizures, complex partial seizures, or apparently generalized seizures without recognized etiology between 2 months and 2 years of age. Neurologic studies were normal, but in all patients, there was a history of similar seizures and age at onset in either the father or the mother. Twenty-four patients (14 girls and 10 boys) were evaluated at our hospital between February 1990 and February 2001. Age at onset, sex, family history of epilepsy and/or paroxysmal dyskinesias, neurologic examination, semiology, distribution, and frequency and duration of seizures were evaluated. Electroencephalographic (EEG) and neuroradiologic studies were also performed. Seizures began between 3 and 22 months of life, with a median age of 5 1/2 months. Nine patients (37.5%) had only apparently generalized seizures, 5 patients (20.8%) had only partial seizures, and 10 patients had both partial and apparently generalized seizures (41.6%). Seizures were invariably brief, occurred during the waking state (100%), and presented mainly in clusters in 12 patients (50%). Interictal EEG was normal in 23 patients (95.8%). Sixteen patients (66.6%) had a confirmed history of convulsions in family members other than parents. Twenty-two patients became seizure free after 30 months of life. Two brothers in the same family had brief paroxysmal episodes of choreoathetosis in the hemibody triggered by stress while awake at 15 and 17 years old, respectively. One of them had paroxysmal choreoathetosis only, and the other was associated with benign familial infantile seizures. One father had brief spontaneous episodes of paroxysmal choreoathetosis when awake at age 18 years. All of them had a good response to antiepilepsy drugs, and neurologic examination and EEG and neuroradiologic studies were normal. Benign familial infantile seizure is a genetic epilepsy syndrome with autosomal dominant inheritance. It may be associated with paroxysmal choreoathetosis (infantile convulsions and choreoathetosis syndrome), which has been linked to the chromosome 16 infantile convulsions and choreoathetosis syndrome region. Patients in families with infantile convulsions and choreoathetosis syndrome could display either benign familial infantile seizures or paroxysmal choreoathetosis or both. It is likely that the disease in families with pure benign familial infantile seizures may be linked to the infantile convulsions and choreoathetosis region as well. We cannot exclude the possibility that the youngest patients may develop choreoathetosis or other dyskinesias later in life.  相似文献   

20.
Mutations in the DEPDC5 (DEP domain–containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12–37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号