首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A growing body of evidence has suggested that the dysfunction of glutamatergic systems plays a pivotal role in major depressive disorder (MDD). In clinical studies, an N-methyl-d-aspartate receptor antagonist, ketamine, was shown to exert both rapid and sustained antidepressant effects in patients with treatment-resistant MDD. The objective of the present study was to confirm the rapid onset of action of ketamine and to investigate the mechanisms underlying both the rapid and sustained antidepressant-like effects of ketamine in rodent models of depression. The intraperitoneal administration of ketamine (10 mg/kg) 30 min prior to testing significantly reduced the number of escape failures in the learned helplessness (LH) paradigm in rats in which currently prescribed antidepressants exerted an effect only after repeated administrations. Ketamine also significantly reduced the immobility time in the tail suspension test (TST), and this effect lasted for 72 h, indicating that ketamine may possess a sustained antidepressant-like effect. The rapid antidepressant-like effects of ketamine in both the LH paradigm and the TST were significantly blocked by subcutaneous treatment with 2,3-dihydroxy-6-nitro-7-sulfoamoylbenzo(f)quinoxaline (NBQX), an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist. In addition, the sustained antidepressant-like effect of ketamine in the TST was partially abolished by treatment with NBQX. In conclusion, we confirmed the faster onset of the action of ketamine, compared with clinically prescribed antidepressants. Moreover, the present results suggested that direct AMPA receptor activation may play an important role in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression, although other mechanisms might be involved in the sustained action.  相似文献   

2.
Major depressive disorder (MDD) is a common, chronic, recurrent mental illness that affects millions of individuals worldwide. Currently available antidepressants are known to affect the monoaminergic (e.g., serotonin, norepinephrine, and dopamine) systems in the brain. Accumulating evidence suggests that the glutamatergic neurotransmission via the excitatory amino acid glutamate also plays an important role in the neurobiology and treatment of this disease. Clinical studies have demonstrated that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant patients with MDD, suggesting the role of glutamate in the pathophysiology of treatment-resistant MDD. Furthermore, a number of preclinical studies demonstrated that the agents which act at glutamate receptors such as NMDA receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and metabotropic glutamate receptors (mGluRs) might have antidepressant-like activities in animal models of depression. In this article, the author reviews the role of glutamate in the neuron-glia communication induced by potential antidepressants.  相似文献   

3.
A low-grade inflammatory response is commonly seen in the peripheral blood of major depressive disorder (MDD) patients, especially those with refractory and chronic disease courses. However, electroconvulsive therapy (ECT), the most drastic intervention reserved for these patients, is closely associated with an enhanced haematogenous as well as neuroinflammatory immune response, as evidenced by both human and animal studies. A related line of experimental evidence further shows that inflammatory stimulation reinforces neurotrophin expression and may even mediate dramatic neurogenic and antidepressant-like effects following exposure to chronic stress. The current review therefore attempts a synthesis of our knowledge on the neurotrophic and immunological aspects of ECT and other electrically based treatments in psychiatry. Perhaps contrary to contemporary views, we conclude that targeted potentiation, rather than suppression, of inflammatory responses may be of therapeutic relevance to chronically depressed patients or a subgroup thereof.  相似文献   

4.
Ketamine is known to have a rapid and lasting antidepressant effect. Recent studies have shown that ketamine exerts it rapid antidepressant effect by blocking burst firing in the lateral habenula (LHb). Whether the sustained antidepressant effect of ketamine occurs through the same mechanism has not been explored. Here, using male rats, we found that local infusion of (R,S)-ketamine into the LHb resulted in a rapid antidepressant-like effect 1 h after infusion, which almost returned to baseline levels after 24 h. Intra-LHb injection of (S)-ketamine also showed a significant antidepressant-like effect 1 h after injection, which recovered at 24 h. No significant antidepressant-like effect was found at 1 or 24 h after the administration of (R)-ketamine into the LHb. Injection of (2R,6R)-hydroxynorketamine, a ketamine metabolite, into the LHb did not result in any obvious antidepressant-like effect 1 or 24 h after injection. Systemic administration of (R,S)-ketamine (intraperitoneally) significantly suppressed LHb bursting activity at 1 h, but the inhibitory effect was reversed 24 h after injection. No significant effect of (R,S)-ketamine on miniature excitatory postsynaptic potentials of LHb neurons was found at 1 or 24 h after systemic application. Our study demonstrated that the sustained antidepressant-like effect of ketamine may not depend on burst firing of LHb neurons.SIGNIFICANCE STATEMENT Ketamine exerts it rapid antidepressant effect by blocking burst firing in the lateral habenula (LHb). However, whether the sustained antidepressant effect of ketamine occurs through the same mechanism has not been explored. In the present study, we demonstrated that the sustained antidepressant effect of ketamine may not depend on the burst firing of LHb neurons. This finding may lead to a novel perspective on LHb in the antidepressant effect of ketamine.  相似文献   

5.
Neuroimaging and neuropathological studies of major depressive disorder (MDD) and bipolar disorder (BD) have identified abnormalities of brain structure in areas of the prefrontal cortex, amygdala, striatum, hippocampus, parahippocampal gyrus, and raphe nucleus. These structural imaging abnormalities persist across illness episodes, and preliminary evidence suggests they may in some cases arise prior to the onset of depressive episodes in subjects at high familial risk for MDD. In other cases, the magnitude of abnormality is reportedly correlated with time spent depressed. Postmortem histopathological studies of these regions have shown abnormal reductions of synaptic markers and glial cells, and, in rare cases, reductions in neurons in MDD and BD. Many of the regions affected by these structural abnormalities show increased glucose metabolism during depressive episodes. Because the glucose metabolic signal is dominated by glutamatergic transmission, these data support other evidence that excitatory amino acid transmission is elevated in limbic-cortical-striatal-pallidal-thalamic circuits during depression. Some of the subject samples in which these metabolic abnormalities have been demonstrated were also shown to manifest abnormally elevated stressed plasma cortisol levels. The co-occurrence of increased glutamatergic transmission and Cortisol hypersecretion raises the possibility that the gray matter volumetric reductions in these depressed subjects are partly accounted for by processes homologous to the dendritic atrophy induced by chronic stress in adult rodents, which depends upon interactions between elevated glucocorticoid secretion and N-meihyl-D-aspartate (NMDA)-glutamate receptor stimulation. Some mood-stabilizing and antidepressant drugs that exert neurotrophic effects in rodents appear to reverse or attenuate the gray matter volume abnormalities in humans with mood disorders. These neurotrophic effects may be integrally related to the therapeutic effects of such agents, because the regions affected by structural abnormalities in mood disorders are known to play major roles in modulating the endocrine, autonomic, behavioral, and emotional experiential responses to stressors.  相似文献   

6.
Agmatine is a polyamine that is produced via decarboxylation of l-arginine by the enzyme arginine decarboxylase. It binds to various receptors and has been accepted as a novel neurotransmitter in brain. In experimental studies, agmatine exhibited anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. Furthermore, it has some beneficial effects on cerebral ischemia models in animals. Agmatine interacts with the mechanisms of withdrawal syndromes for several addictive agents. It also modulates some processes involved in learning and memory. Thus, agmatine seems to be a valuable agent for the treatment of behavioral and neurodegenerative disorders. However, the aberrant release and transmission of agmatine in the central nervous system (CNS) may be associated with mechanisms of several CNS disorders, such as psychosis. Interactions between agmatine and other central neurotransmitter systems, such as the glutamatergic and nitrergic systems, are also very important. In light of the current literature on agmatine, we can anticipate that the central agmatinergic system may be an important target in development of novel strategies and approaches for understanding the etiopathogenesis of some important central disorders and their pharmacological treatments. The main objective of this review is to investigate and update the information on effects of agmatine in CNS and highlight its pharmacological importance in central disorders.  相似文献   

7.
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)‐ketamine (or arketamine) and (S)‐ketamine (or esketamine). Because (S)‐ketamine has higher affinity for NMDAR than (R)‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)‐ketamine exerts greater potency and longer‐lasting antidepressant effects than (S)‐ketamine in animal models of depression and that (R)‐ketamine has less detrimental side‐effects than (R,S)‐ketamine or (S)‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABAA] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is a nerve growth factor that has antidepressant-like effects in animals and may be implicated in the etiology of mood-related phenotypes. However, genetic association studies of the BDNF Val66Met polymorphism (single nucleotide polymorphism rs6265) in major depressive disorder (MDD) have produced inconsistent results. We conducted a meta-analysis of studies comparing the frequency of the BDNF Val66Met-coding variant in depressed cases (MDD) and nondepressed controls. A total of 14 studies involving 2812 cases with DSM-III or -IV defined MDD and 10 843 nondepressed controls met the inclusion criteria. Analyses were stratified either by gender or ethnicity (Asian and Caucasian) because MDD is more prevalent in women and in Caucasians and because BDNF allele frequencies differ by ethnicity. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were provided for allelic analyses (Met versus Val), as well as for genotypic analyses (Met/Met and Val/Met versus Val/Val). In the total sample, the BDNF Val66Met polymorphism was not significantly associated with depression. However, the gender stratified analyses revealed significant effects in both the allelic and genotypic analyses in men (OR(MET), 95% CI; 1.27 (1.10-1.47); OR(MET/MET), 95% CI; 1.67 (1.19-2.36)). Stratification according to ethnicity did not show significant effects of the Val66Met polymorphism on MDD. Our results suggest that the BDNF Val66Met polymorphism is of greater importance in the development of MDD in men than in women. Future research into gender issues will be of interest.  相似文献   

9.
Monoaminergic neurotransmitter (serotonin, norepinephrine and dopamine) mechanisms of disease dominated the research landscape in the pathophysiology and treatment of major depressive disorder (MDD) for more than 50 years and still dominate available treatment options. However, the sum of all brain neurons that use monoamines as their primary neurotransmitter is <20 %. In addition, most patients treated with monoaminergic antidepressants are left with significant residual symptoms and psychosocial disability not to mention side effects, e.g., sexual dysfunction. In the past several decades, there has been greater focus on the major excitatory neurotransmitter in the human brain, glutamate, in the pathophysiology and treatment of MDD. Although several preclinical and human magnetic resonance spectroscopy studies had already implicated glutamatergic abnormalities in the human brain, it was rocketed by the discovery that the N-methyl-d-aspartate receptor antagonist ketamine has rapid and potent antidepressant effects in even the most treatment-resistant MDD patients, including those who failed to respond to electroconvulsive therapy and who have active suicidal ideation. In this review, we will first provide a brief introduction to glutamate and its receptors in the mammalian brain. We will then review the clinical evidence for glutamatergic dysfunction in MDD, the discovery and progress-to-date with ketamine as a rapidly acting antidepressant, and other glutamate receptor modulators (including proprietary medications) for treatment-resistant depression. We will finally conclude by offering potential future directions necessary to realize the enormous therapeutic promise of glutamatergic antidepressants.  相似文献   

10.
Major depressive disorder (MDD) is associated with significant morbidity and mortality. Findings from preclinical and clinical studies suggest that psychiatric illnesses, particularly MDD, are associated with inflammatory processes. While it is unlikely that MDD is a primary 'inflammatory' disorder, there is now evidence to suggest that inflammation may play a subtle role in the pathophysiology of MDD. Most of the evidence that links inflammation to MDD comes from three observations: (a) one-third of those with major depression show elevated peripheral inflammatory biomarkers, even in the absence of a medical illness; (b) inflammatory illnesses are associated with greater rates of MDD; and (c) patients treated with cytokines are at greater risk of developing major depressive illness. We now know that the brain is not an immune privileged organ. Inflammatory mediators have been found to affect various substrates thought to be important in the aetiopathogenesis of MDD, including altered monoamine and glutamate neurotransmission, glucocorticoid receptor resistance and adult hippocampal neurogenesis. At a higher level, inflammation is thought to affect brain signalling patterns, cognition and the production of a constellation of symptoms, termed 'sickness behaviour'. Inflammation may therefore play a role in the aetiology of depression, at least in a 'cohort' of vulnerable individuals. Inflammation may not only act as a precipitating factor that pushes a person into depression but also a perpetuating factor that may pose an obstacle to recovery. More importantly, inflammatory markers may aid in the diagnosis and prediction of treatment response, leading to the possibility of tailored treatments, thereby allowing stratification of what remains a heterogenous disorder.  相似文献   

11.
A growing body of studies indicated that exosomes are one of vital players in pathological process of neuropsychiatric diseases, but their role in major depressive disorder (MDD) remains poorly understood. Here we purified plasma exosomes from depression including lipopolysaccharide (LPS)-challenged depression, chronic restraint stress (CRS)-induced depression, MDD subjects, and from control mice or volunteers. The therapeutic effect of these exogenous exosomes was assessed utilizing behavioral tests and biochemical approaches in the LPS-caused depression or microglial BV2 cells. The expression of exosomal sigma-1 receptor (Sig-1R) was evaluated by western blotting. The role of Sig-1R in the biological function of exosomes was determined using Sig-1R knockout mice and HEK 293 cells. Our results revealed that injection of exosomes from depression models or patients rather than normal controls significantly ameliorated depressive-like behaviors, deficiency of BDNF expression and neuro-inflammation in LPS-challenged mice. In addition, co-culture with exosomes from depression models or patients instead of from controls prevented LPS-induced inflammation responses in microglial BV2 cells. Moreover, Sig-1R was demonstrated for the first time to significantly be enriched in exosomes from depression models or patients compared with that from normal controls. However, Sig-1R null exosomes no longer emerged antidepressant-like action in LPS-challenged mice. Thus, we demonstrated that plasma exosomes from depression exerted antidepressant-like effects in a Sig-1R dependent manner in the LPS-induced depression. This work improves our understanding of the exosomes in depression, suggesting a novel exosomes-based approach for MDD treatment.  相似文献   

12.
BACKGROUND: Excessive glutamatergic neurotransmission is hypothesized to be associated with depressive-like behaviors and possibly major depressive disorder (MDD). Recent evidence that beta-lactam antibiotic agents stimulate uptake of glutamate suggests that this class of compounds might possess antidepressant-like activity. METHODS: Three-month old, male, C57BL/6J mice were administered ceftriaxone (200 mg/kg IP) for 14-18 days, then tested in the tail-suspension, forced swim, and novelty-suppressed feeding tests to determine whether ceftriaxone had similar effects to classical antidepressant compounds in these models. RESULTS: Ceftriaxone treatment had an antidepressant-like effect across models. Reduced immobility and decreased freezing were observed in the forced swim and tail suspension tests. The same trend was seen in novelty-suppressed feeding, but the effect was not statistically significant. CONCLUSION: Ceftriaxone demonstrates antidepressant-like effects in several mouse models. This is consistent with the hypothesis that enhanced uptake of glutamate might have antidepressant-like effects.  相似文献   

13.
《Clinical neurophysiology》2021,132(6):1339-1346
ObjectiveKetamine has been shown to be effective in treatment of episodes of major depressive disorder (MDD). This controlled study aimed to analyse the predictive and discriminative power of heart rate (HR) and heart rate variability (HRV) for ketamine treatment in MDD.MethodsIn 51 patients, HR and HRV were assessed at baseline before and during ketamine infusion and 24 hours post ketamine infusion. Montgomery–Åsberg Depression Rating Scale (MADRS) was used to assess changes of depressive symptoms. A 30% or 50% reduction of symptoms after 24 hours or within 7 days was defined as response. A linear mixed model was used for analysis.ResultsKetamine infusion increased HR and HRV power during and after infusion. Responders to ketamine showed a higher HR during the whole course of investigation, including at baseline with medium effect sizes (Cohen’s d = 0.47–0.67). Furthermore, HR and HRV power discriminated between responders and non-responders, while normalized low and high frequencies did not.ConclusionThe findings show a predictive value of HR and HRV power for ketamine treatment. This further underlines the importance of the autonomous nervous system (ANS) and its possible malfunctions in MDD.SignificanceThe predictive power of HR and HRV markers should be studied in prospective studies. Neurophysiological markers could improve treatment for MDD via optimizing the choice of treatments.  相似文献   

14.
Major depressive disorder (MDD) is a common, chronic, recurrent mental illness that affects millions of individuals worldwide. To date, the monoaminergic systems (serotonin, norepinephrine, and dopamine) have received the most attention in the neurobiology of MDD, and all classes of antidepressants target these monoaminergic systems. Accumulating evidence suggests that the glutamatergic system plays an important role in the neurobiology and treatment of this disease. Some clinical studies have demonstrated that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant patients with MDD. Here, the author reviews the recent findings on the role of the glutamatergic system in the neurobiology of MDD and in new potential therapeutic targets (NMDA receptors, AMPA receptors, metabotropic glutamate receptors, ceftriaxone, minocycline, N-acetyl-l-cysteine) for MDD.  相似文献   

15.
16.
抑郁症患者血小板和中枢神经系统的咪唑啉受体(IR)的I1R及I2R亚型与正常人比较有着特定的改变。而且IR内源性配体胍丁胺和一些I2R的配体有一定的抗抑郁作用。IR可能是通过调节单胺类递质和单胺氧化酶,参与抑郁症的发病过程。  相似文献   

17.
Antidepressant-like effect of agmatine is not mediated by serotonin   总被引:1,自引:0,他引:1  
The aim of this study was to characterize the behavioral effects of systemically administered agmatine in animal models predictive of antidepressant- and anxiolytic-like activity and clarify whether the effects of agmatine depend on the intact serotonergic system. Only the highest dose of agmatine tested (50 mg/kg) decreased immobility of mice in the forced swimming test. The magnitude of the effect was slightly smaller than that of the tricyclic antidepressant imipramine (15 mg/kg). Agmatine did not change the locomotion of mice in the open field. Pretreatment with the tryptophane hydroxylase inhibitor PCPA for 3 days resulted in more than 70% drop in the tissue levels of 5-HT and 5-HIIA but did not counteract the antidepressant-like effect of agmatine. The administration of agmatine did not modify behavior of animals in the light-dark compartment test of anxiety. We conclude that the antidepressant-like effect of agmatine seems not to be mediated by the serotonergic system. We failed to confirm the reported anxiolytic-like activity of agmatine.  相似文献   

18.
Glucocorticoids (GCs) have repeatedly been shown to impair hippocampus-mediated, declarative memory retrieval and prefrontal cortex-based working memory in healthy subjects. However, recent experimental studies indicated that patients with major depressive disorder (MDD) lack these impairing effects. These missing effects have been suggested to result from dysfunctional brain GC receptors. The purpose of the present study was to investigate whether response inhibition, an executive function relying on the integrity of the prefrontal cortex, would be impaired after cortisol administration in patients with MDD. In a placebo-controlled, double blind crossover study, 50 inpatients with MDD and 54 healthy control participants conducted an emotional go/no-go task consisting of human face stimuli (fearful, happy, and neutral) after receiving a dose of 10 mg hydrocortisone and after placebo. GC administration had an enhancing effect on inhibitory performance in healthy control participants, indicated by faster responses, while no GC effect was revealed for the patients group. Moreover, patients showed an overall worse performance than healthy participants. In conclusion, this study further supports the hypothesis of impaired central glucocorticoid receptor function in MDD patients. Regarding the importance of inhibitory functioning for daily living, further studies are needed to examine the impact of glucocorticoids on response inhibition.  相似文献   

19.

Background

Several lines of evidence implicate abnormalities in glutamate neural transmission in the pathophysiology of mood disorders, including major depressive disorder (MDD) and bipolar disorder (BP). Preclinical antidepressant effects were also reported for group II metabotropic glutamate receptor (Group II mGluRs) antagonists show dose-dependent antidepressant-like effects in murine models of depression. Also, it has been suggested that abnormalities in the hypothalamic-pituitary-adrenal axis and serotonergic neural transmission are important mechanisms in the pathophysiology of mood disorders. Group II mGluRs play an important role in regulating the function of these mechanisms. From these results, it has been suggested that abnormalities in Group II mGluRs might be involved in the pathophysiology of mood disorders, including MDD) and BP, and may influence the clinical response to treatment with SSRIs in MDD. Therefore, we studied the association between Group II mGluR genes (GRM2 and GRM3) and mood disorders and the efficacy of fluvoxamine treatment in Japanese MDD patients.

Materials and methods

Using three tagging SNPs in GRM2 and an SNP (rs6465084) reported functional variant in GRM3, we conducted a genetic association analysis of case-control samples (325 MDD patients, 155 BP patients and 802 controls) in the Japanese population. In addition, we performed an association analysis of GRM2 and GRM3 and the efficacy of fluvoxamine treatment in 117 Japanese patients with MDD. The MDD patients in this study had scores of 12 or higher on the 17 items of the Structured Interview Guide for Hamilton Rating Scale for Depression (SIGH-D). We defined a clinical response as a decrease of more than 50% in baseline SIGH-D within 8 weeks, and clinical remission as an SIGH-D score of less than 7 at 8 weeks.

Results

We found an association between rs6465084 in GRM3 and MDD in the allele-wise analysis after Bonferroni's correction (P-value = 0.0371). However, we did not find any association between GRM3 and BP or the fluvoxamine therapeutic response in MDD in the allele/genotype-wise analysis. We also did not detect any association between GRM2 and MDD, BP or the fluvoxamine therapeutic response in MDD in the allele/genotype-wise or haplotype-wise analysis.

Discussion

We detected an association between only one marker (rs6465084) in GRM3 and Japanese MDD patients. However, because we did not perform an association analysis based on LD and a mutation scan of GRM3, a replication study using a larger sample and based on LD may be required for conclusive results.  相似文献   

20.
Accumulating evidence suggests that N-methyl-d-aspartate receptor (NMDAR) antagonists (e.g. ketamine) may exert rapid antidepressant effects in MDD patients. In the present study, we evaluated the rapid antidepressant effects of ketamine compared with the electroconvulsive therapy (ECT) in hospitalized patients with MDD. In this blind, randomized study, 18 patients with DSM-IV MDD were divided into two groups which received either three intravenous infusions of ketamine hydrochloride (0.5 mg/kg over 45 min) or ECT on 3 test days (every 48 h). The primary outcome measure was the Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HDRS), which was used to rate overall depressive symptoms at baseline, 24 h after each treatment, 72 h and one week after the last (third) ketamine or ECT. Within 24 h, depressive symptoms significantly improved in subjects receiving the first dose of ketamine compared with ECT group. Compared to baseline level, this improvement remained significant throughout the study. Depressive symptoms after the second dose ketamine was also lower than the second ECT. This study showed that ketamine is as effective as ECT in improving depressive symptoms in MDD patients and have more rapid antidepressant effects compared with the ECT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号