首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Summary: Purpose : We studied cerebral perfusion patterns in the various subtypes of TLE, as determined by pathology and good outcome after temporal lobectomy (as confirmation of temporal origin).
Methods : We studied clinical features and ictal technetium 99m hexamethyl-propyleneamineoxime (99mTc-HM-PAO) single-photon emission-computed tomography (SPECT) in four subgroups of patients with intractable temporal lobe epilepsy (TLE) treated with surgery: hippocampal sclerosis (group 1, n = 10), foreign-tissue lesion in mesial temporal lobe (group 2, n = 8), foreign-tissue lesion in lateral temporal lobe (group 3, n = 7), and normal temporal lobe tissue with good surgical outcome (group 4, n = 5).
Results : No major clinical differences in auras, complex partial seizures or postictal states were identified among the groups. Ictal SPECT showed distinct patterns of cerebral perfusion in these subtypes of TLE. In groups 1 and 2, hyperperfusion was seen in the ipsilateral mesial and lateral temporal regions. In group 3, hyperperfusion was seen bilaterally in the temporal lobes with predominant changes in the region of the lesion. Hyperperfusion was restricted to the ipsilateral anteromesial temporal region in group 4. Ipsilateral temporal hyperperfusion in mesial onset seizures can be explained by known anatomic projections between mesial structures and ipsilateral temporal neocortex. Bilateral temporal hyperperfusion in lateral onset seizures can be explained by the presence of anterior commissural connections between lateral temporal neocortex and the contralateral amygdala.
Conclusions : We conclude that the perfusion patterns seen on ictal SPECT are helpful for subclassification of temporal lobe seizures, whereas clinical features are relatively unhelpful. These perfusion patterns provide an insight into preferential pathways of seizure propagation in the subtypes of TLE.  相似文献   

2.
OBJECTIVE: To investigate the pattern of perfusion abnormalities in ictal and interictal brain perfusion SPECT images (BSI) from patients with temporal lobe epilepsy (TLE). METHOD: It was acquired interictal and ictal BSI from 24 patients with refractory TLE. BSIs were analyzed by visual inspection and statistical parametric mapping (SPM2). Statistical analysis compared the patients group to a control group of 50 volunteers. The images from patients with left-TLE were left-right flipped. RESULTS: It was not observed significant perfusional differences in interictal scans with SPM. Ictal BSI in SPM analysis revealed hyperperfusion within ipsilateral temporal lobe (epileptogenic focus) and also contralateral parieto-occipital region, ipsilateral posterior cingulate gyrus, occipital lobes and ipsilateral basal ganglia. Ictal BSI also showed areas of hypoperfusion. CONCLUSION: In a group analysis of ictal BSI of patients with TLE, voxel-wise analysis detects a network of distant regions of perfusional alteration which may play active role in seizure genesis and propagation.  相似文献   

3.
Summary: We report a patient with bilateral independent temporal lobe seizures in whom two [99mTc]HMPAO single photon emission computed tomograph (SPECT) scans were performed during two different seizures. In the first perüctal SPECT, [99mTc]HMPAO was injected in the interval between two closely spaced seizures (one localized in the left temporal lobe and the other in the right temporal lobe). SPECT images showed hypoperfusion in the left lateral temporal lobe, hyper-perfusion of the left mesial temporal region, and pronounced hyperperfusion in the right anterior temporal lobe. These results suggest both a postictal left temporal SPECT pattern and an ictal right temporal pattern. In the second periictal SPECT, [99mTc]HMPA was injected immediately after a right temporal lobe seizure and showed right lateral temporal lobe hypoperfusion and right mesial hyperperfusion, suggesting a postictal right temporal SPECT pattern. Interpretation of the periictal SPECT should take into account EEG changes at the time or in the minutes immediately after injection of [99mTc] HMPAO.  相似文献   

4.
Shin WC  Hong SB  Tae WS  Kim SE 《Neurology》2002,58(3):373-380
OBJECTIVE: To investigate ictal hyperperfusion patterns during semiologic progression of seizures, the authors performed SPECT subtraction in 50 patients with temporal lobe epilepsy (TLE). METHODS: The patients were categorized into five groups according to semiologic progression during ictal SPECT (Group 1 had aura only; Group 2 had motionless staring with or without aura; Group 3 had motionless staring and then automatism with or without aura; Group 4 had motionless staring and then dystonic posturing with or without aura and automatism; and Group 5 had motionless staring, automatism, then head version and generalized seizures with or without aura and dystonic posturing). RESULTS: In Group 1, three patients showed ipsilateral temporal hyperperfusion and two had bilateral temporal hyperperfusion with ipsilateral predominance. In Group 2, three patients (42.9%) showed bilateral temporal hyperperfusion with unilateral predominance and four patients (57.1%) revealed insular hyperperfusion of epileptic side. In Group 3, 15 patients (88.2%) showed bilateral temporal hyperperfusion with unilateral predominance and 12 patients (70.6%) revealed insular hyperperfusion. In Group 4, 11 patients (84.6%) showed basal ganglia hyperperfusion on the opposite hemisphere to the side of the dystonic posturing. In Group 5, there were multiple hyperperfusion areas in the frontal, temporal, and basal ganglia regions. However, the injection times of radiotracer in five groups were relatively short and similar. CONCLUSIONS: The semiologic progression in TLE seizures were related to the propagation of hyperperfusion from ipsilateral temporal lobe to contralateral temporal lobe, insula, basal ganglia, and frontal lobe. Not only the radiotracer injection time but also semiologic progression after the injection was important to determine hyperperfusion pattern of ictal SPECT.  相似文献   

5.
Ictal Single Photon Emission Computed Tomography in Occipital Lobe Seizures   总被引:8,自引:5,他引:3  
Summary: Purpose: Ictal single photon emission computed tomography (SPECT) has been evaluated as an adjunctive localizing technique in temporal lobe epilepsies and, to a lesser degree, in some extratemporal epilepsies. The purpose of this study was to determine whether occipital lobe seizures are associated with distinctive ictal cerebral blood perfusion (rCP) patterns.
Methods : SPECT was used with the tracer 99mTc HMPAO to image ictal rCP in 6 patients in whom clinical, EEG, and imaging data indicated occipital lobe seizures.
Results : Two patterns of rCP were seen. Four patients had hyperperfusion that was restricted to the occipital lobe, and two patients had hyperperfusion of the occipital lobe and the ipsilateral mesial temporal lobe, with hypoperfusion of the lateral temporal lobe. The latter 2 patients had clinical and surface EEG evidence of temporal lobe involvement in the seizure discharge.
Conclusions : Ictal rCP patterns in occipital lobe seizures are distinct from those in temporal lobe seizures and may vary according to whether or not ipsilateral temporal lobe structures are involved in the ictal discharge.  相似文献   

6.
The ictal increase of regional cerebral blood flow has yet to be fully utilised in the investigation of focal seizures. Although single photon emission tomography (SPECT) is being increasingly used in the localisation of epileptic foci, the evolution and time courses of the peri-ictal perfusion changes have yet to be clarified. We performed serial SPECT studies in the interictal, ictal and immediate postictal states in 12 patients with refractory temporal lobe epilepsy to define the patterns and duration of peri-ictal cerebral blood flow changes. Visual analysis showed a constant pattern of unilateral global increases in temporal lobe perfusion during seizures which suddenly switched to a pattern of relative mesial temporal (hippocampal) hyperperfusion and lateral temporal hypoperfusion in the immediate postictal period. Quantitative analysis confirmed the visual assessment. Lateral temporal cortex ictal/normal side to side ratios were increased by mean 35.1% (95% confidence interval 21.8% to 48.4%) more in the ictal studies than in the interictal studies and mesial temporal cortex ratios increased by mean 30.8% (22.4% to 39.2%). In the postictal state, however, lateral temporal ratios were reduced by mean 7.7% (-15.8% to 0.4%) compared with interictal values, whereas mesial temporal perfusion was maintained compared with the interictal studies. These observations provide critical information for interpreting scans which can be used in the localisation of epileptic foci. This postictal switch in blood flow patterns may reflect the underlying metabolic processes of neuronal activation and recovery and have implications for understanding the neurobiology of human epileptic seizures.  相似文献   

7.
Summary: Purpose: Single photon emission computed tomography (SPECT) is widely used to evaluate functional abnormalities during the epileptic event. Changes in regional cerebral blood flow (rCBF) are well defined in patients with temporal lobe epilepsy (TLE) undergoing surgical resection. Nonetheless, the interpretation of ictal abnormalities in CBF beyond the temporal lobes has not been carefully addressed.
Methods : We assessed 4 patients with pathologically proven unilateral TLE who had significant ipsilateral frontal hypoperfusion in ictal studies with no other abnormalities but chronic epilepsy accounting for such findings. Patients were assessed as candidates for surgery by interictal EEG, neuropsychological studies, brain magnetic resonance imaging, scalp electrode video-EEG monitoring, and ictal SPECT.
Results : Characteristic hyperperfusion was evident over the temporal lobe ipsilateral to the EEG focus, with significant hypoperfusion over the frontal region in 3 patients. In patient 4, frontal hypoperfusion was not statistically significant.
Conclusions : SPECT demonstrated relative rCBF changes beyond the epileptogenic zone in unilateral TLE. Our findings provide further insight into the pathophysiological changes underlying this condition.  相似文献   

8.
OBJECTIVE: To compare composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging (also known as SISCOM) patterns between right and left medial temporal-onset seizures to document neuroanatomical involvement in perfusion patterns. DESIGN: A retrospective comparative survey. SETTING: Epilepsy monitoring unit in a tertiary care referral center. PARTICIPANTS: Subjects with temporal lobe epilepsy (TLE) who underwent ictal single-photon emission computed tomography studies. MAIN OUTCOME MEASURES: Comparison of ictal perfusion pattern changes in subjects with right and left temporal seizures. RESULTS: Composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance images showed similar regions of hyperperfusion change in the ipsilateral anteromedial temporal-corpus striatum-insula region in both groups. In the midbrain reticular formation, there was a significant difference in hyperperfusion between the left and right TLE groups. In addition, the right, but not the left, TLE group shows contralateral hypoperfusion of the temporoparietal junction. CONCLUSIONS: While anteromedial temporal-corpus striatum-insula perfusion patterns are similar, there are brainstem and hemispheric perfusion pattern differences in right and left TLE seizures, confirming pathophysiological differences between the groups. These findings help define neuronal network involvement in TLE seizures, and may explain the differences in clinical symptoms of right and left TLE seizures.  相似文献   

9.
The diagnostic value of lack of aura experience in patients with temporal lobe epilepsy (TLE) is unclear. PURPOSE: To evaluate possible factors of bitemporal dysfunction in patients with mesial TLE who did not experience an aura in electroencephalography EEG/video monitoring for epilepsy surgery. METHODS: Ictal scalp EEG propagation patterns of 347 seizures of 58 patients with mesial temporal lobe sclerosis or non-lesional mesial TLE, interictal epileptiform discharges (IED), presence of unilateral mesial temporal lobe sclerosis in visual magnetic resonance imaging (MRI) analysis, prose memory performance, history or not of an aura, and postictal memory or absence of an aura were analyzed. The ictal EEG was categorized as follows. EEG seizure: (a) remaining regionalized, (b) non-lateralized, (c) showing later switch of lateralization or bitemporal asynchronous ictal patterns. RESULTS: Absent aura in monitoring was significantly correlated with absence of unitemporal MRI sclerosis (P=0.004), bitemporal IED (P=0.008), and propagation of the ictal EEG to the contralateral temporal lobe (P=0.001). Other historical data and interictal prose memory performance were not significantly correlated with absent aura. Ten of 11 patients without aura in monitoring also had absent or rare auras in their history. CONCLUSIONS: Lack of aura experience strongly correlates with indicators of bitemporal dysfunction such as bitemporal interictal sharp waves and bitemporal ictal propagation in scalp EEG, and absence of lateralized MRI sclerosis in patients with mesial TLE. The fact that absent auras are not correlated with episodic memory suggests a transient memory deficit, probably because of rapid propagation to the contralateral mesial temporal lobe.  相似文献   

10.
We used single-photon emission computed tomography (SPECT) to study postictal cerebral blood flow (CBF) in 51 patients with temporal lobe epilepsy. There were 78 seizures studied, 77 by early postictal injection of Tc-99m HMPAO (delay from seizure onset = 4.3 +/- 4.5 min) and one by ictal injection. Increased focal temporal lobe uptake, predominantly confined to the anteromesial region, was present in 83% and declined rapidly over 5 minutes. Reduced activity in the lateral temporal lobe accompanied the mesial increase in 80% of studies, extending over much of the ipsilateral hemisphere and closely associated with the degree and extent of postictal EEG slow waves. These patterns enabled correct seizure localization by blinded analysis in 69% (31/45) of the patients with a unilateral EEG focus. The remainder showed bilateral or no changes. One of six patients with bitemporal EEG foci had unilateral perfusion changes. The positive predictive value for the correct localization of a unilateral focus by postictal SPECT was 97% (31/32). Postictal CBF imaging with SPECT can be used to support noninvasive electrographic localization and may decrease the need for invasive electrode studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号