首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), are the most prevalent psychiatric conditions, and are also among the most severe and debilitating. However, the precise neurobiology underlying these disorders is currently unknown. One way to combat these disorders is to discover novel biomarkers for them. The development of such biomarkers will aid both in the diagnosis of mood disorders and in the development of effective psychiatric medications to treat them. A number of preclinical studies have suggested that the brain‐derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of MDD. In 2003, we reported that serum levels of BDNF in antidepressant‐naive patients with MDD were significantly lower than those of patients medicated with antidepressants and normal controls, and that serum BDNF levels were negatively correlated with the severity of depression. Additionally, we found that decreased serum levels of BDNF in antidepressant‐naive patients recovered to normal levels associated with the recovery of depression after treatment with antidepressant medication. This review article will provide an historical overview of the role played by BDNF in the pathophysiology of mood disorders and in the mechanism of action of therapeutic agents. Particular focus will be given to the potential use of BDNF as a biomarker for mood disorders. BDNF is initially synthesized as a precursor protein proBDNF, and then proBDNF is proteolytically cleaved to the mature BDNF. Finally, future perspectives on the use of proBDNF as a novel biomarker for mood disorders will be discussed.  相似文献   

2.
Several lines of evidence implicate BDNF in the pathophysiology of psychiatric illness. BDNF polymorphisms have also been associated with the risk of schizophrenia and mood disorders. We therefore investigated whether levels of (pro)BDNF and receptor proteins, TrkB and p75, are altered in hippocampus in schizophrenia and mood disorder and whether polymorphisms in each gene influenced protein expression. Formalin-fixed paraffin-embedded hippocampal sections from subjects with schizophrenia, major depressive disorder (MDD), bipolar disorder (BPD) and non-psychiatric controls were obtained from the Stanley Foundation Neuropathology Consortium. (pro)BDNF, TrkB(T1) and p75 protein densities were quantified by immunoautoradiography and DNA extracted from each subject was used to determine the effect of genotype on protein expression. In MDD, reductions in (pro)BDNF were seen in all layers of the right but not the left hippocampus with no changes in the dentate gyrus. The pattern was similar but less marked for BPD. In addition, BPD but not MDD patients, had bilateral reductions in p75 in hippocampal layers but not in dentate gyrus. No changes in TrkB(T1) density were seen in any diagnosis. These findings suggest MDD and BPD may share impairment in (pro)BDNF expression. However, BPD may involve impairments of both (pro)BDNF and p75 receptor, whereas MDD may involve impaired (pro)BDNF alone. Moreover, the lateralisation of changes may indicate a role of asymmetry in vulnerability to MDD. Hippocampal (pro)BDNF and receptor levels were also affected by genotype, suggesting that allelic variations are important in the hippocampal abnormalities seen in these psychiatric disorders.  相似文献   

3.
BACKGROUND: As patients with mood disorders manifest heterogeneity in phenomenology, pathophysiology, etiology, and treatment response, a biological classification of mental disease is urgently needed to advance research. Patient and methodological variability complicates the comparison of neuroimaging study results and limits heuristic model development and a biologically-based diagnostic schema. OBJECTIVE: We have critically reviewed and compared the magnetic resonance neuroimaging literature to determine the degree and directionality of volumetric changes in brain regions putatively implicated in the pathophysiology of major depressive disorder (MDD) versus bipolar disorder (BD). METHODS: A total of 140 published magnetic resonance imaging investigations evaluating subjects with BD or MDD were selected to provide a summary and interpretation of volumetric neuroimaging results in MDD and BD. Further commentary on the pathophysiological implications, and putative cellular and pharmacological mechanisms, is also provided. RESULTS: While whole brain volumes of patients with mood disorders do not differ from those of healthy controls, regional deficits in the frontal lobe, particularly in the anterior cingulate and the orbitofrontal cortex, appear to consistently differentiate subjects with mood disorders from the general population. Preliminary findings also suggest that subcortical structures, particularly the striatum, amygdala, and hippocampus, may be differentially affected in MDD and BD. CONCLUSIONS: Structural neuroimaging studies have consistently identified regional abnormalities in subjects with mood disorders. Future studies should strive to definitively establish the influence of age and medication.  相似文献   

4.
BACKGROUND: Several lines of studies have suggested the involvement of serotonin transporter (5-HTT) in the pathophysiology of mood disorders. The aim of this study was to examine whether 5-HTT binding was altered in patients with mood disorders using positron emission tomography (PET). METHODS: Thirteen antidepressant-naive or -free patients with mood disorders and 21 age-matched healthy control subjects participated in this study. The patients consisted of 7 with major depressive disorder (MDD) and 6 with bipolar disorder (BD). Positron emission tomography scans were performed using a selective ligand for 5-HTT, [11C](+)McN5652. The uptake was quantified in the thalamus and midbrain by graphical method with reference tissue, and binding potential (BP) was used for the index of 5-HTT binding. RESULTS: Binding potential in the thalamus was significantly increased in patients with mood disorders as compared to control subjects, whereas BP in the midbrain did not differ between the groups. Subgroup comparison showed that MDD patients had significantly higher BP in the thalamus compared to control subjects. Binding potential of the thalamus was higher by approximately 22% in the combined patients and 23% in MDD patients relative to control subjects. CONCLUSIONS: These findings may suggest the possibility of altered 5-HTT in patients with mood disorders. Functional abnormality in the thalamus may be involved in the pathophysiology of mood disorders.  相似文献   

5.
BACKGROUND: Bipolar disorder (BD) has been increasingly associated with abnormalities in neuroplasticity and cellular resilience. Brain Derived Neurotrophic Factor (BDNF) gene has been considered an important candidate marker for the development of bipolar disorder and this neurotrophin seems involved in intracellular pathways modulated by mood stabilizers. Also, previous studies demonstrated a role for BDNF in the pathophysiology and clinical presentation of mood disorders. METHODS: We investigated whether BDNF levels are altered during mania. Sixty subjects (14 M and 46 F) were selected and included in the study. Thirty patients meeting SCID-I criteria for manic episode were age and gender matched with thirty healthy controls. Young Mania Rating Scale (YMRS) evaluated the severity of manic episode and its possible association with the neurotrophin levels. RESULTS: Mean BDNF levels were significantly decreased in drug free/naive (224.8 +/- 76.5 pg/ml) compared to healthy controls (318.5 +/- 114.2), p < .001]. Severity of the manic episode presented a significant negatively correlation to plasma BDNF levels (r= .78; p < .001; Pearson test). CONCLUSIONS: Overall, these results suggest that the decreased plasma BDNF levels may be directly associated with the pathophysiology and severity of manic symptoms in BD. Further studies are necessary to clarify the role of BDNF as a putative biological marker in BD.  相似文献   

6.
OBJECTIVES: Brain-derived neurotrophic factor (BDNF) has been proposed as a candidate molecule in the pathophysiology of major depressive disorder (MDD) and bipolar disorders (BD). Reduced levels of peripheral BDNF have been found in drug-free MDD patients, in drug-treated depressed or manic patients with BD type I (BD-I), but not in drug-treated euthymic BD-I individuals. No study has been done in patients with BD type II (BD-II). Moreover, the influence of Axis I psychiatric comorbidity on circulating BDNF in affective patients has never been evaluated. Therefore, in the present study, we aimed: (i) to confirm previous findings on peripheral BDNF in MDD and BD-I patients; (ii) to assess whether changes in circulating BDNF occur also in patients with BD-II; and (iii) to exclude the possibility that comorbid psychiatric disorders exerted an effect on BDNF levels in affective patients. METHODS: We measured serum BDNF concentrations by an enzyme-linked immunosorbent assay method in 85 subjects, including 24 euthymic patients with unipolar depression (UD), 17 euthymic patients with BD-I, 11 euthymic patients with BD-II, 11 UD patients with a current major depressive episode and 22 drug-free healthy controls. At the time of the study, 15 patients were drug-treated; the remaining ones were drug-free for at least four weeks. RESULTS: Compared to healthy controls, serum BDNF concentrations were significantly reduced in all the patient groups (F(4,80) = 3.840, p = 0.006) with no significant difference among them. Drug treatments and comorbid psychiatric disorders had no effect on lowered circulating BDNF levels in affective patients. CONCLUSIONS: Present results confirm previous independent findings of reduced circulating BDNF in patients with MDD and report, for the first time, decreased serum BDNF levels in euthymic patients with UD, BD-I and BD-II, independently from drug treatment status and concomitant Axis I psychiatric disorders.  相似文献   

7.
8.
The current understanding of major depressive disorder (MDD) and bipolar disorder (BD) is plagued by a cacophony of controversies as evidenced by competing schools to understand MDD/BD. The DSM/ICD taxonomies have cemented their status as the gold standard for diagnosing MDD/BD. The aim of this review is to discuss the false dogmas that reign in current MDD/BD research with respect to the new, data-driven, machine learning method to model psychiatric illness, namely nomothetic network psychiatry (NNP). This review discusses many false dogmas including: MDD/BD are mind-brain disorders that are best conceptualized using a bio-psycho-social model or mind-brain interactions; mood disorders due to medical disease are attributable to psychosocial stress or chemical imbalances; DSM/ICD are the gold standards to make the MDD/BD diagnosis; severity of illness should be measured using rating scales; clinical remission should be defined using threshold values on rating scale scores; existing diagnostic BD boundaries are too restrictive; and mood disorder spectra are the rule. In contrast, our NNP models show that MDD/BD are not mind-brain or psycho-social but systemic medical disorders; the DSM/ICD taxonomies are counterproductive; a shared core, namely the reoccurrence of illness (ROI), underpins the intertwined recurrence of depressive and manic episodes and suicidal behaviors; mood disorders should be ROI-defined; ROI mediates the effects of nitro-oxidative stress pathways and early lifetime trauma on the phenome of mood disorders; severity of illness and treatment response should be delineated using the NNP-derived causome, pathway, ROI and integrated phenome scores; and MDD and BD are the same illness.  相似文献   

9.
The cognitive impairment and neuroanatomical changes that takes place among patients with bipolar disorder (BD) patients has been well described. Recent data suggest that changes in neuroplasticity, cell resilience and connectivity are the main neuropathological findings in BD. Data from differential lines of research converges to the brain-derived neurotrophic factor (BDNF) as an important contributor to the neuroplasticity changes described among BD patients. BDNF serum levels have been shown to be decreased in depressive and manic episodes, returning to normal levels in euthymia. BDNF has also been shown to decrease as the disorder progresses. Moreover, factors that negatively influence the course of BD, such as life stress and trauma have been shown to be associated with a decrease in BDNF serum levels. These findings suggest that BDNF plays a central role in the progression of BD. The present review discusses the role of BDNF as a mediator of the neuroplastic changes that occur in portion with mood episodes and the potential use of serum BDNF as a biomarker in BD.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号