首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Painful peripheral neuropathy is a dose-limiting complication of chemotherapy. Cisplatin produces a cumulative toxic effect on peripheral nerves, and 30-40% of cancer patients receiving this agent experience pain. By modeling cisplatin-induced hyperalgesia in mice with daily injections of cisplatin (1 mg/kg, i.p.) for 7 d, we investigated the anti-hyperalgesic effects of anandamide (AEA) and cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of AEA hydrolysis. Cisplatin-induced mechanical and heat hyperalgesia were accompanied by a decrease in the level of AEA in plantar paw skin. No changes in motor activity were observed after seven injections of cisplatin. Intraplantar injection of AEA (10 μg/10 μl) or URB597 (9 μg/10 μl) transiently attenuated hyperalgesia through activation of peripheral CB? receptors. Co-injections of URB597 (0.3 mg/kg daily, i.p.) with cisplatin decreased and delayed the development of mechanical and heat hyperalgesia. The effect of URB597 was mediated by CB? receptors since AM281 (0.33 mg/kg daily, i.p.) blocked the effect of URB597. Co-injection of URB597 also normalized the cisplatin-induced decrease in conduction velocity of Aα/Aβ-fibers and reduced the increase of ATF-3 and TRPV1 immunoreactivity in dorsal root ganglion (DRG) neurons. Since DRGs are a primary site of toxicity by cisplatin, effects of cisplatin were studied on cultured DRG neurons. Incubation of DRG neurons with cisplatin (4 μg/ml) for 24 h decreased the total length of neurites. URB597 (100 nM) attenuated these changes through activation of CB? receptors. Collectively, these results suggest that pharmacological facilitation of AEA signaling is a promising strategy for attenuating cisplatin-associated sensory neuropathy.  相似文献   

2.
N-arachidonoyl-dopamine (NADA) is an endogenous ligand at TRPV1 and CB(1) receptors, which are expressed on primary afferent nociceptors. The aim of this study was to determine contributions of proposed pronociceptive TRPV1 and antinociceptive CB(1) receptors to effects of peripheral NADA on primary afferent fibre function. Effects of NADA on primary afferent nociceptor function, determined by whole cell patch clamp and calcium imaging studies of adult dorsal root ganglion (DRG) neurons, were determined. Application of NADA (1 microm) to DRG neurons depolarized the resting membrane potential (Vm) from -58 +/- 1 to -44 +/- 3 mV (P < 0.00001) and evoked a significant increase (P < 0.0001) in intracellular calcium (74 +/- 11% of response to 60 mm KCl), compared to basal. The TRPV1 receptor antagonist capsazepine abolished NADA-evoked depolarization of Vm (P < 0.0001) and NADA-evoked calcium responses (P < 0.001), which were also blocked by the CB(1) receptor antagonist SR141716A (P < 0.001). Effects of NADA (1.5 microg and 5 microg/50 microL) on mechanically evoked responses of dorsal horn neurons in anaesthetized Sprague-Dawley rats were studied. Intraplantar injection of the higher dose of NADA (5 microg/50 microL) studied significantly inhibited innocuous (8, 10 g) mechanically evoked responses of dorsal horn neurons compared to vehicle, effects blocked by intraplantar injection of SR141716A. Higher weight (26-100 g) noxious-evoked responses of dorsal horn neurons were also significantly inhibited by NADA (5 microg/50 microL), effects blocked by intraplantar injection of the TRPV1 antagonist, iodo-resiniferatoxin. NADA has a complex pattern of effects on DRG neurons and primary afferent fibres, which is likely to reflect its dual site of action at TRPV1 and CB(1) receptors and the differential expression of these receptors by primary afferent fibres.  相似文献   

3.
Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (P<0.001) attenuated capsaicin-evoked calcium responses in DRG neurons in neuropathic and sham-operated rats. The CB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target.  相似文献   

4.
The endogenous cannabinoid system regulates neuronal excitability. The effects of inhibiting fatty acid amide hydrolase (FAAH), the enzyme responsible for metabolism of the endocannabinoid anandamide, on kainic acid (KA)-induced neuronal activity were investigated in the rat in vivo, using the selective FAAH inhibitor URB597. Hippocampal neuronal ensemble unit activity was recorded in isoflurane-anesthetized rats using 16-wire microelectrode arrays. Separate groups of rats were administered with single doses of KA alone, KA and URB597 (0.3 or 1 mg kg(-1), i.p.), or URB597 (1 mg kg(-1)) alone. The role of the cannabinoid CB1 receptor in mediating the effects of URB597 was explored using the CB1 selective antagonists AM251, either alone or prior to KA and URB597 (1 mg kg(-1)) administration, and SR141716A, administered prior to KA and URB597 (1 mg kg(-1)). Neuronal firing and burst firing rates were examined in animals with confirmed dorsal hippocampal placements. KA induced an increase in both firing and burst firing rates, effects which were attenuated by URB597 in a dose-related manner. Pretreatment with AM251 or SR141716A partly attenuated the URB597-mediated effects on firing and burst firing rate. Rats treated with AM251 or URB597 alone did not exhibit any significant change in either firing or burst firing rates compared with basal activity. These results suggest that the inhibition of endocannabinoid metabolism can suppress hyperexcitability in the rat hippocampus, partly via a CB1 receptor-mediated mechanism.  相似文献   

5.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists.  相似文献   

6.
Estradiol attenuates the ATP-induced increase of intracellular calcium concentration ([Ca(2+)](i)) in rat dorsal root ganglion (DRG) neurons by blocking the L-type voltage gated calcium channel (VGCC). Because ATP is a putative nociceptive signal, this action may indicate a site of estradiol regulation of pain. In other neurons, 17β-estradiol (E(2)) has been shown to modulate L-type VGCC through a membrane estrogen receptor-group II metabotropic glutamate receptor (mGluR(2/3)). The present study investigated whether the rapid estradiol attenuation of the ATP-induced increase in [Ca(2+)](i) requires mGluR(2/3). Previously we showed that DRG (L(1)-S(3)) express ERα, P2X(3), and mGluR(2/3) receptors. DRG were acutely dissociated by enzyme digestion and grown in short-term culture for imaging analysis. DRG neurons were stimulated twice, once with ATP (50 μM) for 5 sec and then again in the presence of E(2) (100 nM) or E(2) (100 nM) + LY341495 (100 nM), an mGluR(2/3) inhibitor. ATP induced a transient increase in [Ca(2+)](i) (216.3 ± 41.2 nM). This transient increase could be evoked several times in the same DRG neurons if separated by a 5-min washout. Treatment with estradiol significantly attenuated the ATP-induced [Ca(2+)](i) increase in 60% of the DRG neurons, to 163.3 ± 20.9 nM (P < 0.001). Coapplication of E(2) and the mGluR(2/3) inhibitor LY341495 blocked the 17β-estradiol attenuation of the ATP-induced [Ca(2+) ](i) transient (209.1 ± 32.2 nM, P > 0.05). These data indicate that the rapid action of E(2) in DRG neurons is dependent on mGluR(2/3) and demonstrate that membrane estrogen receptor-α-initiated signaling involves interaction with mGluRs.  相似文献   

7.
Calcitonin gene-related peptide (CGRP), is produced in dorsal root ganglia (DRG) neurons and released from primary afferent neurons to mediate hemodynamic effects and neurogenic inflammation. In this work, we determined whether lipopolysaccharide (LPS), an inflammatory stimulator, could trigger CGRP release from cultured DRG neurons and if so, which cellular signaling pathway was involved in this response. Cytoplasmic concentration of calcium ([Ca(2+)](i)) plays a key role in neurotransmitter release, therefore [Ca(2+)](i) was also determined in cultured DRG cells using fluo-3/AM. The results showed that LPS (0.1-10 microg/ml) evoked CGRP release in a time- and concentration-dependent manner from DRG neurons. LPS also increased [Ca(2+)](i) in a concentration-dependent manner. The protein kinase C (PKC) inhibitors, calphostin C 0.5 microM or RO-31-8220 0.1 microM, and the cAMP-dependent protein kinase (PKA) specific inhibitor RP-CAMPS 30 microM or nonspecific inhibitor H8 1 microM inhibited 1 microg/ml LPS-evoked CGRP release and [Ca(2+)](i) increase from DRG neurons. The cGMP-dependent protein kinase (PKG) inhibitor Rp-8-pCPT-cGMPS 30 microM did not block the LPS response. These data suggest that LPS may stimulate CGRP release and [Ca(2+)](i) elevation through PKC and PKA, but not PKG signaling pathway in DRG neurons of neonatal rats.  相似文献   

8.
The phytocannabinoid cannabidiol (CBD) possesses no psychotropic activity amid potentially beneficial therapeutic applications. We here characterized interactions between CBD (1 microM) and the endocannabinoid system in cultured rat hippocampal cells. The CBD-induced Ca2+ rise observed in neurons and glia was markedly reduced in the presence of the endogenous cannabinoid anandamide in neurons, with no alteration seen in glia. Neuronal CBD responses were even more reduced in the presence of the more abundant endocannabinoid 2-arachidonyl glycerol, this action was maintained in the presence of the CB1 receptor antagonist AM281 (100 nM). Neuronal CBD responses were also reduced by pre-exposure to glutamate, expected to increase endocannabinoid levels by increasing in [Ca2+]i. Application of AM281 at 1 microM elevated CBD-induced Ca2+ responses in both cell types, further confirming our finding that endocannabinoid-mediated signalling is negatively coupled to the action of CBD. However, upregulation of endogenous levels of endocannabinoids via inhibition of endocannabinoid hydrolysis (with URB597 and MAFP) could not be achieved under resting conditions. Because delta9-tetrahydrocannabinol did not mimic the endocannabinoid actions, and pertussis toxin treatment had no effect on CBD responses, we propose that the effects of AM281 were mediated via a constitutively active signalling pathway independent of CB1 signalling. Instead, signalling via G(q/11) and phospholipase C appears to be negatively coupled to CBD-induced Ca2+ responses, as the inhibitor U73122 enhanced CBD responses. Our data highlight the interaction between exogenous and endogenous cannabinoid signalling, and provide evidence for the presence of an additional pharmacological target, sensitive to endocannabinoids and to AM281.  相似文献   

9.
Growth cone filopodia function both as structural and sensory devices during neuronal pathfinding and their presence is important for correct growth cone navigation. It is assumed that a growth cone can adjust the area of the environment it can explore by regulating the length and number of its filopodial sensors, and in several cell types, these parameters are controlled by the intracellular calcium concentration ([Ca(2+)](i)). In the present report, we address the question whether [Ca(2+)](i) is a general regulator of growth cone filopodia, or whether different cell types utilize different second-messenger systems for this purpose. We show that increasing [Ca(2+)](i) in growth cones of chick dorsal root ganglion (DRG) neurons does not affect average filopodial length in this cell type, suggesting that this parameter is not controlled by [Ca(2+)](i) in chick DRG neurons. Further, we demonstrate that the second-messenger protein kinase C (PKC) is involved in the regulation of filopodial length in chick DRG neurons. Activation of PKC with the phorbol ester, phorbol myristate-13-acetate (PMA), caused filopodial shortening, whereas inhibition of PKC with either bisindolylmaleimide I or calphostin C caused a significant elongation of filopodia. Although the pathway through which PKC mediates its effect on growth cone filopodia in chick DRG neurons remains to be identified, our results indicate that filopodial regulation by [Ca(2+)](i), though clearly important in several other neuronal cell types in vitro, appears to be less important in chick DRG neurons. Rather, we find that in chick DRG neurons, filopodial parameters are controlled by PKC.  相似文献   

10.
The effects of hypo-osmotic membrane stretch on intracellular calcium concentration ([Ca(2+)](i)), cell volume and cellular excitability were investigated in cultured mouse primary sensory trigeminal neurons. Hypotonic solutions (15--45%) led to rapid cell swelling in all neurons. Swelling was accompanied by dose-dependent elevations in [Ca(2+)](i) in a large fraction of neurons. Responses could be classified into three categories. (i) In 57% of the neurons [Ca(2+)](i) responses had a slow rise time and were generally of small amplitude. (ii) In 21% of the neurons, responses had a faster rise and were larger in amplitude. (iii) The remaining cells (22%) did not show [Ca(2+)](i) responses to hypo-osmotic stretch. Slow and fast [Ca(2+)](i) changes were observed in trigeminal neurons of different sizes with variable responses to capsaicin (0.5 microM). The swelling-induced [Ca(2+)](i) responses were not abolished after depletion of intracellular Ca2+ stores with cyclopiazonic acid or preincubation in thapsigargin, but were suppressed in the absence of external Ca(2+). They were strongly attenuated by extracellular nickel and gadolinium. Hypotonic stimulation led to a decrease in input resistance and to membrane potential depolarization. Under voltage-clamp, the [Ca(2+)](i) elevation produced by hypotonic stimulation was accompanied by the development of an inward current and a conductance increase. The time course and amplitude of the [Ca(2+)](i) response to hypo-osmotic stimulation showed a close correlation with electrophysiological properties of the neurons. Fast [Ca(2+)](i) responses were characteristic of trigeminal neurons with short duration action potentials and marked inward rectification. These findings suggest that hypo-osmotic stimulation activates several Ca(2+)-influx pathways, including Gd(3+)-sensitive stretch-activated ion channels, in a large fraction of trigeminal ganglion neurons. Opening of voltage-gated Ca(2+) channels also contributes to the response. The pattern and rate of Ca(2+) influx may be correlated with functional subtypes of sensory neurons.  相似文献   

11.
Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal‐dependent memory is compromised while amygdala‐dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long‐term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light‐dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long‐term potentiation (LTP) in the CA1, (iii) impaired hippocampal‐dependent short‐term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala‐dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55‐212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal‐ and amygdala‐dependent processes. Moreover, the effects of WIN55‐212,2 and URB597 on Ext and acoustic startle were prevented by co‐administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55‐212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1 receptors, in the opposite effects of severe stress on memory and plasticity in the hippocampus and amygdala.  相似文献   

12.
The objectives of this study were to describe the size distribution of capsaicin-sensitive neurons in nodose and jugular ganglia and to determine whether there is a difference in capsaicin sensitivity between these two types of ganglia. Functional identification was made by measurement of the capsaicin-evoked calcium (Ca2+) transients in cultured vagal sensory neurons of young adult Sprague-Dawley rats using the Fura-2-based ratiometric imaging technique. In the first study series, cells on the second day of culture were perfused with capsaicin solution (10(-7) M) for 15 s, and the Ca2+ transients were continuously recorded before, during, and after the capsaicin challenge. Out of 603 viable neurons, 57.5% were capsaicin-sensitive; the percentages of capsaicin-sensitive cells in the nodose and jugular ganglia were 59.8% and 55.4%, respectively. Capsaicin sensitivity predominated in the small- and medium-sized neurons; the capsaicin-sensitive cells generally had a diameter less than 35 microm in both types of ganglia. Although the results did not indicate any differences in the size distribution of capsaicin-sensitive neurons between the two ganglia, results of our second study series showed that a near-maximal concentration of capsaicin (3 x 10(-6) M) evoked a significantly greater peak Ca2+ transient in jugular neurons (382.5 +/- 85.5 nM) than in nodose neurons (134.3 +/- 17.5 nM). In summary, our results showed that an increase in cell diameter was accompanied by a decreasing trend in percentage of capsaicin-sensitive neurons in both vagal ganglia. Capsaicin at high concentration evoked a greater peak Ca2+ transient in jugular ganglion neurons, despite no difference in the responses to KCl between these two types of ganglion neurons.  相似文献   

13.
Orexin-A and -B (hypocretin-1 and -2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-positive neurons in the arcuate nucleus (ARC) of the rats. Microinjection of orexins into the ARC markedly increased food intake. Orexins increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the isolated neurons from the ARC, which were subsequently shown to be immunoreactive for NPY. The increases in [Ca(2+)](i) were inhibited by blockers of phospholipase C (PLC), protein kinase C (PKC) and Ca(2+) uptake into endoplasmic reticulum. The stimulation of food intake and increases in [Ca(2+)](i) in NPY neurons were greater with orexin-A than with orexin-B, indicative of involvement of the orexin-1 receptor (OX(1)R). In contrast, orexin-A and -B equipotently attenuated [Ca(2+)](i) oscillations and decreased [Ca(2+)](i) levels in POMC-containing neurons. These effects were counteracted by pertussis toxin, suggesting involvement of the orexin-2 receptor and Gi/Go subtypes of GTP-binding proteins. Orexins also decreased [Ca(2+)](i) levels in glucose-responsive neurons in the ventromedial hypothalamus (VMH), a satiety center. Leptin exerted opposite effects on these three classes of neurons. These results demonstrate that orexins directly regulate NPY, POMC and glucose-responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin-A evokes Ca(2+) signaling in NPY neurons via OX(1)R-PLC-PKC and IP(3) pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.  相似文献   

14.
The relationship between intracellular Ca(2+) ([Ca(2+)](i)) regulation and programmed cell death is not well-defined; both increases and decreases in [Ca(2+)](i) have been observed in cells undergoing apoptosis. We determined [Ca(2+)](i) in cultured murine cortical neurons undergoing apoptosis after exposure to staurosporine or following oxygen-glucose deprivation in the presence of glutamate receptor antagonists. Neuronal [Ca(2+)](i) was decreased 1-4 h after exposure to staurosporine (30 nM). A [Ca(2+)](i) decrease was also observed 1 h after the end of the oxygen-glucose deprivation period when MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were added to the bathing medium during the deprivation period. A similar decrease in [Ca(2+)](i) produced by reducing extracellular Ca(2+) or chelating intracellular Ca(2+) was sufficient to induce neuronal apoptosis. Raising [Ca(2+)](i) either by activating voltage-sensitive Ca(2+) channels with (-) Bay K8644 or by application of low concentrations of kainate attenuated both staurosporine and oxygen-glucose deprivation-induced apoptosis.  相似文献   

15.
The endocannabinoid system can be considered as a putative target to affect ictogenesis as well as the generation of a hyperexcitable epileptic network. Therefore, we evaluated the effect of a CB1 receptor agonist (WIN55.212-2) and of an inhibitor of the enzymatic degradation of the endocannabinoid anandamide (fatty acid hydrolase inhibitor URB597) in the amygdala kindling model of temporal lobe epilepsy. Only minor effects on seizure thresholds and seizure parameters without a clear dose-dependency were observed in fully kindled mice. When evaluating the impact on kindling acquisition, WIN55.212-2 significantly delayed the progression of seizure severity. In contrast, URB597 did not affect the development of seizures in the kindling paradigm. Analysis of cell proliferation and neurogenesis during the kindling process revealed that URB597 significantly reduced the number of newborn neurons. These data give first evidence that CB1-receptor activation might render a disease-modifying approach. Future studies are necessary that further analyze the role of CB1 receptors and to confirm the efficacy of CB1-receptor agonists in other models of chronic epilepsy.  相似文献   

16.
17.
Nitric oxide (NO) can have opposite effects on peripheral sensory neuron sensitivity depending on the concentration and source of NO, and the experimental setting. The aim of this study was to determine the role of endogenous NO production in the regulation of mechanosensitive Ca(2+) influx of dorsal root ganglion (DRG) neurons. Adult mouse DRG neurons were grown in primary culture for 2-5 days, loaded with Fura-2, and tested for mechanically mediated changes in [Ca(2+)](i) by fluorescent ratio imaging. In the presence of the NOS inhibitors L-NAME, TRIM, or 7-NI, but not the inactive analogue D-NAME, peak [Ca(2+)](i) transients to mechanical stimulation were increased more than 2-fold. Neither La(3+) (25 microM), an inhibitor of voltage activated Ca(2+) channels, or tetrodotoxin (TTX, 1 microM), a selective inhibitor of voltage-gated Na(+) channels, had an effect on mechanically activated [Ca(2+)](i) transients under control conditions. However, in the presence of L-NAME, both La(3+) and TTX partially blocked the [Ca(2+)](i) response. Addition of Gd(3+), a blocker of mechanosensitive cation channels and L-type Ca(2+) channels, at a concentration (100 microM) that markedly inhibited the mechanical response under control conditions, only partially inhibited the response in the presence of L-NAME. The combination of either La(3+) or TTX with Gd(3+) caused near complete inhibition of mechanically stimulated [Ca(2+)](i) transients in the presence of L-NAME. We conclude that focal mechanical stimulation of DRG neurons causes Ca(2+) influx occurs primarily through mechanosensitive cation channels under control conditions. In the presence of NOS inhibitors, additional Ca(2+) influx occurs through voltage-sensitive Ca(2+) channels. These results suggest that endogenously produced NO in cultured DRG neurons decreases mechanosensitivity by inhibiting voltage-gated Na(+) and Ca(2+) channels.  相似文献   

18.
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。  相似文献   

19.
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。  相似文献   

20.
Cannabinoid (CB) agonists suppress nausea and vomiting (emesis). Similarly, transient receptor potential vanilloid-1 (TRPV1) receptor agonists are anti-emetic. Arvanil, N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide, is a synthetic 'hybrid' agonist of CB1 and TRPV1 receptors. Anandamide and N-arachidonoyl-dopamine (NADA) are endogenous agonists at both these receptors. We investigated if arvanil, NADA and anandamide were anti-emetic in the ferret and their mechanism of action. All compounds reduced the episodes of emesis in response to morphine 6 glucuronide. These effects were attenuated by AM251, a CB1 antagonist that was pro-emetic per se, and TRPV1 antagonists iodoresiniferatoxin and AMG 9810, which were without pro-emetic effects. Similar sensitivity to arvanil and NADA was found for prodromal signs of emesis. We analysed the distribution of TRPV1 receptors in the ferret brainstem and, for comparison, the co-localization of CB1 and TRPV1 receptors in the mouse brainstem. TRPV1 immunoreactivity was largely restricted to the nucleus of the solitary tract of the ferret, with faint labeling in the dorsal motor nucleus of the vagus and sparse distribution in the area postrema. A similar distribution of TRPV1, and its extensive co-localization with CB1, was observed in the mouse. Our findings suggest that CB1 and TRPV1 receptors in the brainstem play a major role in the control of emesis by agonists of these two receptors. While there appears to be an endogenous 'tone' of CB1 receptors inhibiting emesis, this does not seem to be the case for TRPV1 receptors, indicating that endogenously released endocannabinoids/endovanilloids inhibit emesis preferentially via CB1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号