首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Lungfishes are the closest living relatives of land vertebrates, and their neuroanatomical organization is particularly relevant for deducing the neural traits that have been conserved, modified, or lost with the transition from fishes to land vertebrates. The immunohistochemical localization of calbindin (CB) and calretinin (CR) provides a powerful method for discerning segregated neuronal populations, fiber tracts, and neuropils and is here applied to the brains of Neoceratodus and Protopterus, representing the two extant orders of lungfishes. The results showed abundant cells containing these proteins in pallial and subpallial telencephalic regions, with particular distinct distribution in the basal ganglia, amygdaloid complex, and septum. Similarly, the distribution of CB and CR containing cells supports the division of the hypothalamus of lungfishes into neuromeric regions, as in tetrapods. The dense concentrations of CB and CR positive cells and fibers highlight the extent of the thalamus. As in other vertebrates, the optic tectum is characterized by numerous CB positive cells and fibers and smaller numbers of CR cells. The so‐called cerebellar nucleus contains abundant CB and CR cells with long ascending axons, which raises the possibility that it could be homologized to the secondary gustatory nucleus of other vertebrates. The corpus of the cerebellum is devoid of CB and CR and cells positive for both proteins are found in the cerebellar auricles and the octavolateralis nuclei. Comparison with other vertebrates reveals that lungfishes share most of their features of calcium binding protein distribution with amphibians, particularly with salamanders.  相似文献   

2.
We employed an anti‐transducin antibody (Gαt‐S), in combination with other markers, to characterize the Gαt‐S‐immunoreactive (ir) system in the CNS of the sea lamprey, Petromyzon marinus. Gαt‐S immunoreactivity was observed in some neuronal populations and numerous fibers distributed throughout the brain. Double Gαt‐S‐ and opsin‐ir neurons (putative photoreceptors) are distributed in the hypothalamus (postoptic commissure nucleus, dorsal and ventral hypothalamus) and caudal diencephalon, confirming results of García‐Fernández et al. (Cell and Tissue Research, 288, 267–278, 1997). Singly Gαt‐S‐ir cells were observed in the midbrain and hindbrain, increasing the known populations. Our results reveal for the first time in vertebrates the extensive innervation of many brain regions and the spinal cord by Gαt‐S‐ir fibers. The Gαt‐S innervation of the habenula is very selective, fibers densely innervating the lamprey homologue of the mammalian medial nucleus (Stephenson‐Jones et al., Proceedings of the National Academy of Sciences of the United States of America, 109, E164–E173, 2012), but not the lateral nucleus homologue. The lamprey neurohypophysis was not innervated by Gαt‐S‐ir fibers. We also analyzed by double immunofluorescence the relation of this system with other systems. A dopaminergic marker (TH), serotonin (5‐HT) or GABA do not co‐localize with Gαt‐S‐ir neurons although codistribution of fibers was observed. Codistribution of Gαt‐S‐ir fibers and isolectin‐labeled extrabulbar primary olfactory fibers was observed in the striatum and hypothalamus. Neurobiotin retrograde transport from the spinal cord combined with immunofluorescence revealed spinal‐projecting Gαt‐S‐ir reticular neurons in the caudal hindbrain. Present results in an ancient vertebrate reveal for the first time a collection of brain targets of Gαt‐S‐ir neurons, suggesting they might mediate non‐visual modulation by light in many systems.  相似文献   

3.
The glycinergic cell populations in the brain of the lesser spotted dogfish were studied by a glycine immunofluorescence method. Numerous glycine‐immunoreactive (Gly‐ir) neurons were observed in different brain nuclei. In the telencephalon, Gly‐ir cells were observed in the olfactory bulb, telencephalic hemispheres, and preoptic region. In the hypothalamus, cerebrospinal fluid‐contacting Gly‐ir neurons were observed in the lateral and posterior recess nuclei. Coronet cells of the saccus vasculosus were Gly‐ir. In the diencephalon, Gly‐ir neurons were observed in the prethalamus and pretectum. In the midbrain, both the optic tectum and lateral mesencephalic nucleus contained numerous Gly‐ir neurons. In the cerebellum, many Golgi cells were Gly‐ir. In the rhombencephalon, Gly‐ir cells were observed in the medial and ventral octavolateral nuclei, vagal lobe, visceromotor nuclei, and reticular formation, including the inferior raphe nucleus. In the spinal cord, some neurons of the marginal nucleus and some cells of the dorsal and ventral horns were Gly‐ir. Comparison of dogfish Gly‐ir cell populations with those reported for the sea lamprey, Siberian sturgeon, and zebrafish revealed some shared features but also notable differences. For example, Gly‐ir cells were observed in the dogfish cerebellum, unlike the case in the Siberian sturgeon and zebrafish, whereas the absence of Gly‐ir neurons in the isthmus is shared by all these species, except for lampreys. Gly‐ir populations in the dogfish hypothalamus and telencephalon are notable in comparison with those of the other jawed vertebrates investigated to date. Together, these results reveal a complex and divergent evolution of glycinergic systems in the major groups of fishes. J. Comp. Neurol. 521: 3057–3082, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.  相似文献   

5.
Sushi repeat‐containing protein X‐linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type‐specific expression was verified by double‐labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2‐ir positive neurons gave origin to dense projections traveling ventrally and caudally toward the hypophysis. Intense axonal varicosities and terminal arborizations were identified in the rat and human neurohypophysis. SRPX2‐ir cells were also found in the adenohypophysis. Light SRPX2‐ir projections were observed in the dorsal and ventral raphe, locus coeruleus, and the nucleus of the solitary tract in mouse, rat and monkey. SRPX2 protein was also detected in plasma and CSF. Our data revealed intense phylogenetically conserved expression of SRPX2 protein in distinct hypothalamic nuclei and the hypophysis, suggesting its active role in the hypothalamo‐pituitary axis. The presence of SRPX2 protein in the plasma and CSF suggests that some of its functions depend on secretion into body fluids.  相似文献   

6.
Day‐active tree shrews are promising animals as research models for a variety of human disorders. Neuropeptide Y (NPY) modulates many behaviors in vertebrates. Here we examined the distribution of NPY in the brain of tree shrews (Tupaia belangeri chinensis) using immunohistochemical techniques. The differential distribution of NPY‐immunoreactive (‐ir) cells and fibers were observed in the rhinencephalon, telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon of tree shrews. Most NPY‐ir cells were multipolar or bipolar in shape with triangular, fusiform, and/or globular perikarya. The densest cluster of NPY‐ir cells were found in the mitral cell layer of the main olfactory bulb (MOB), arcuate nucleus of the hypothalamus, and pretectal nucleus of the thalamus. The MOB presented a unique pattern of NPY immunoreactivity. Laminar distribution of NPY‐ir cells was observed in the MOB, neocortex, and hippocampus. Compared to rats, the tree shrews exhibited a particularly robust and widespread distribution of NPY‐ir cells in the MOB, bed nucleus of the stria terminalis, and amygdala as well as the ventral lateral geniculate nucleus and pretectal nucleus of the thalamus. By contrast, a low density of neurons were scattered in the striatum, neocortex, polymorph cell layer of the dentate gyrus, superior colliculus, inferior colliculus, and dorsal tegmental nucleus. These findings provide the first detailed mapping of NPY immunoreactivity in the tree shrew brain and demonstrate species differences in the distribution of this neuropeptide, providing an anatomical basis for the participation of the NPY system in the regulation of numerous physiological and behavioral processes. J. Comp. Neurol. 523:495–529, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin‐19, protocadherin‐17, and cadherin‐6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin‐19 and protocadherin‐17 showing much wider and stronger expression than that of cadherin‐6. Both protocadherin‐19 and protocadherin‐17‐expressing cells occur throughout the brain, with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g., auditory, gustatory, lateral line, olfactory, and visual nuclei) and motor nuclei (e.g., oculomotor, trochlear, trigeminal motor, abducens, and vagal motor nuclei) contain protocadherin‐19 and/or protocadherin‐17‐expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial, and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin‐6 expression is much weaker and limited in the adult fish brain. J. Comp. Neurol. 523:1419–1442, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Gonadotrophin‐releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin‐inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic‐pituitary‐gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS‐1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS‐1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS‐1, designated KiSS‐2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.  相似文献   

9.
In vertebrates, gonadotropin‐releasing hormone (GnRH) and gonadotropin‐inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa‐R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa‐R has not been studied in teleost species, partially because of the lack of fish‐specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa‐immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa‐R‐immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa‐immunoreactive fibers nor LPXRFa‐R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle‐stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α‐melanotropin (α‐MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa‐R are expressed only in LH, ACTH, and α‐MSH cells. These results suggest that LPXRFa and LPXRFa‐R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753–2775, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号