首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Much of the excess iron reported in the substantia nigra of subjects with Parkinson's disease (PD) implicates nonneuronal (glial) cellular compartments. Yet, the significance of these glial iron deposits vis-a-vis toxicity to indigent nigrostriatal dopaminergic neurons remains unclear. Cysteamine (CSH) induces the appearance of iron-rich (peroxidase-positive) cytoplasmic inclusions in cultured rat astroglia, which are identical to glial inclusions that progressively accumulate in substantia nigra and other subcortical brain regions with advancing age. We previously demonstrated that the iron-mediated peroxidase activity in these cells oxidizes dopamine and other catechols to potentially neurotoxic semiquinone radicals. In the present study, we cocultured catecholamine-secreting PC12 cells (as low-density dispersed cells or high-density colonies) atop monolayers of either CSH-pretreated (iron-enriched) or control rat astroglial substrata. In some experiments, the PC12 cells were differentiated with nerve growth factor (NGF). The nature of the glial substratum did not appreciably affect the growth characteristics of the PC12 cells. However, undifferentiated PC12 cells grown atop CSH-pretreated astrocytes (a senescent glial phenotype) were far more susceptible to dopamine(1 microM)-H2O2(1 microM)-related killing than PC12 cells cultured on control astroglia. Differentiated PC12 cells behaved similarly although the fraction killed was about half that seen with the undifferentiated PC12 cells. In the latter experiments, PC12 cell death was abrogated by coadministration of the antioxidants, ascorbate (200 microM), melatonin (100 microM), or resveratrol (50 microM) or the iron chelator, deferoxamine (400 microM), attesting to the role of oxidative stress and catalytic iron in the mechanism of PC12 cell death in this system. The aging-associated accumulation of redox-active iron in subcortical astrocytes may facilitate the bioactivation of dopamine to neuronotoxic free radical intermediates and thereby predispose the senescent nervous system to PD and other neurodegenerative disorders.  相似文献   

2.
Heme oxygenase-1 (HO-1) is an inducible enzyme involved in heme catabolism, tissue iron homeostasis and the cellular response to oxidative stress. Elevated HO-1 expression in astrocytes has been observed in association with abnormal iron deposition and increased oxidative stress in Parkinson's disease (PD). Since HO-1 could contribute to these aspects of PD pathobiology we have investigated its regulation in cultured astrocytes and C6 glioma cells. Here we report that dopamine is a potent inducer of HO-1. This induction is not mediated by a classical dopamine receptor and is not mimicked by a range of catecholamines and dopamine metabolites. When the time-course of HO-1 expression was compared between dopamine and hemin, the latter induced the gene immediately while the former did so with a lag. This suggested two distinct signal transduction pathways. However, cycloheximide blocked both hemin- and dopamine-induced HO-1 expression, suggesting that both pathways may involve proteins with short half-lives. Ascorbic acid blocked dopamine induction of HO-1 but had no effect on hemin-induced expression. This suggested that dopamine may signal upstream of the unstable protein by producing pro-oxidant metabolites or byproducts. Inhibition of monoamine oxidases A or B or catechol-O-methyl transferase did not block HO-1 induction by dopamine, indicating that these enzymes were not converting dopamine to an active metabolite. These results suggest that dopamine, released or secreted from affected neurons, may trigger HO-1 expression in neighboring astrocytes. HO-1 and its metabolites could then contribute to the oxidative stress and iron deposition associated with PD.  相似文献   

3.
4.
The mechanisms responsible for the pathological deposition of brain iron in Parkinson's disease, Alzheimer's disease and other human neurodegenerative disorders remain poorly understood. In rat primary astrocyte cultures, we demonstrated that dopamine, cysteamine, H(2)O(2) and menadione rapidly induce heme oxygenase-1 (HO-1) expression (mRNA and protein) followed by sequestration of non-transferrin-derived (55)Fe by the mitochondrial compartment. The effects of dopamine on HO-1 expression were inhibited by ascorbate implicating a free radical mechanism of action. Dopamine-induced mitochondrial iron trapping was abrogated by administration of the heme oxygenase inhibitors, tin mesoporphyrin (SnMP) or dexamethasone (DEX) indicating that HO-1 upregulation is necessary for subsequent mitochondrial iron deposition in these cells. Overexpression of the human HO-1 gene in cultured rat astroglia by transient transfection also stimulated mitochondrial (55)Fe deposition, an effect that was again preventible by SnMP or DEX administration. We hypothesize that free ferrous iron and carbon monoxide generated by HO-1-mediated heme degradation promote mitochondrial membrane injury and the deposition of redox-active iron within this organelle. We have shown that the percentages of GFAP-positive astrocytes that co-express HO-1 in Parkinson-affected substantia nigra and Alzheimer-diseased hippocampus are significantly increased relative to age-matched controls. Stress-induced up-regulation of HO-1 in astroglia may be responsible for the abnormal patterns of brain iron deposition and mitochondrial insufficiency documented in various human neurodegenerative disorders.  相似文献   

5.
Hemin, the oxidized form of heme, is released from hemoglobin after CNS hemorrhage and may contribute to injury to surrounding tissue. The heme oxygenase (HO) enzymes catalyze the breakdown of hemin to biliverdin, carbon monoxide, and ferric iron. Although HO-2, the isoform expressed predominantly in neurons, accelerates heme-mediated neuronal injury, inhibitor studies suggest that HO-1 induction has a protective effect on astrocytes. In the present study, we directly compared the vulnerability of cultured HO-1 knockout and wild-type astrocytes to hemin. Consistent with prior observations, exposure of wild-type cultures to hemin for 24 hr resulted in protein carbonylation and concentration-dependent cell death between 10 and 60 microM, as determined by MTT and lactate dehydrogenase release assays. In cultures prepared from mice lacking the HO-1 gene, oxidative cell injury was approximately doubled. Both protein oxidation and cell death in HO-1 knockout astrocytes were significantly reduced by pretreating cultures with an adenovirus encoding the HO-1 gene prior to hemin exposure. HO-2 expression was observed in both knockout and wild-type cultures and was not altered by HO-1 gene deletion. Cell hemin accumulation after 20 hr hemin exposure was 4.7-fold higher in knockout cells. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Selectively increasing its expression in astrocytes may be beneficial after hemorrhagic CNS injuries.  相似文献   

6.
含巯基抗氧化剂对多巴胺诱导PC12细胞凋亡的保护作用   总被引:1,自引:0,他引:1  
目的 观察不同的抗氧化剂对多巴胺诱导的PC12细胞凋亡的保护作用,探讨帕金森病(PD)神经元的死亡机制.方法 应用TUNEL染色及电泳技术,观察4种不同的抗氧化剂对多巴胺(DA)诱导的PC12细胞凋亡的保护性作用. 结果 适当浓度的多巴胺可诱导PC12细胞凋亡,抗氧化剂GSH及N-AC在10mmol/L浓度下能显著抑制DA诱导的PC12细胞凋亡(P<0.05),而相同浓度的维生素C及维生素E则无保护作用.结论 细胞凋亡可能参与了PD的发病过程,适当的抗氧化剂对于DA诱导的细胞凋亡具有保护作用.  相似文献   

7.
α-Synuclein is a key player in the pathogenesis of Parkinson disease (PD). Expression of human heme oxygenase-1 (HO-1) in astrocytes of GFAP.HMOX1 transgenic (TG) mice between 8.5 and 19 months of age results in a parkinsonian phenotype characterized by neural oxidative stress, nigrostriatal hypodopaminergia associated with locomotor incoordination, and overproduction of α-synuclein. We identified two microRNAs (miR-), miR-153 and miR-223, that negatively regulate α-synuclein in the basal ganglia of male and female GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively declined in the wild-type (WT) and GFAP.HMOX1 mice between 11 and 19 months of age. Moreover, at each time point surveyed, circulating levels of miR-153 were significantly lower in the TG animals compared to WT controls, while α-synuclein protein concentrations were elevated in erythrocytes of the GFAP.HMOX1 mice at 19 months of age relative to WT values. Primary WT neurons co-cultured with GFAP.HMOX1 astrocytes exhibited enhanced protein oxidation, mitophagy and apoptosis, aberrant expression of genes regulating the dopaminergic phenotype, and an imbalance in gene expression profiles governing mitochondrial fission and fusion. Many, but not all, of these neuronal abnormalities were abrogated by small interfering RNA (siRNA) knockdown of α-synuclein, implicating α-synuclein as a potent, albeit partial, mediator of HO-1's neurodystrophic effects in these parkinsonian mice. Overexpression of HO-1 in stressed astroglia has previously been documented in the substantia nigra of idiopathic PD and may promote α-synuclein production and toxicity by downmodulating miR-153 and/or miR-223 both within the CNS and in peripheral tissues.  相似文献   

8.
Astrocytes are the most abundant glial cell type in the brain. Impairment in astrocyte functions can critically influence neuronal survival and leads to neurodegeneration. Parkinson’s disease (PD) is a common neurodegenerative disorder, characterized by motor dysfunction that results from progressive neuronal loss. Astrocytic dysfunction was demonstrated in human samples and in experimental models of PD. Mutations in DJ-1 (PARK7) leading to loss of functional protein cause familial PD and enhance sensitivity to oxidative insults. Recently, an increase in DJ-1’s expression was found in reactive astrocytes in various neurodegenerative disorders. Here we show that lack of DJ-1 attenuates astrocytes’ ability to support neuronal cells, thereby leading to accelerated neuronal damage. DJ-1 knockout mice demonstrated increased vulnerability in vivo to 6-hydroxydopamine (6-OHDA) hemiparkinsonian PD model. Astrocytes isolated from DJ-1 knockout mice showed an inferior ability to protect human neuroblastoma cells against 6-OHDA insult both by co-culture and through their conditioned media, as compared to wild-type astrocytes. DJ-1 knockout astrocytes showed blunted ability to increase the expression of cellular protective mechanisms against oxidative stress mediated via Nrf-2 and HO-1 in response to exposure to 6-OHDA. These experiments demonstrated that lack of DJ-1 impairs astrocyte-mediated neuroprotection.  相似文献   

9.
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN), and it has been suggested that dopamine is one of the main endogenous toxins in the genesis of PD. We demonstrated that thiol antioxidants (the reduced form of glutathione, N-acetyl-L-cysteine, and L-cysteine), which conjugate with one dopamine oxidation intermediate, o-quinone, provided almost complete protection from dopamine-mediated toxicity in SH-SY5Y, a human neuroblastoma cell line. In contrast, catalase partially provided protection against cell death caused by dopamine. These data suggest that the generation of dopamine oxidation intermediates, rather than hydrogen peroxide, plays a pivotal role in dopamine-induced toxicity. Iron accumulated in the SN of patients with PD can cause dopaminergic neuronal degeneration by enhancing oxidative stress. However, we found that iron reduced the total amounts of dopamine oxidation intermediates and enhanced the formation of melanin, a final product of dopamine oxidation. Also, addition of iron inhibited dopamine-induced cytotoxicity. These results suggest that iron can provide protection when it accelerates the conversion of dopamine oxidation intermediates.  相似文献   

10.
Oxidative stress is thought to be a major contributor to the progress of the Parkinson's Disease (PD) because of the high vulnerability of dopaminergic cells against oxidative stress. The present work demonstrates that with the expression of the baculovirus p35 gene, PC12 cells could gain a high resistance against oxidative toxicants, hydrogen peroxide (H(2)O(2)) and 6-hydroxydopamine (6-OHDA). The DNA fragmentation analysis showed that PC12 cells underwent apoptosis after exposure to H(2)O(2) or 6-OHDA, while PP35 cells, a p35-expressing PC12 cell line, did not. Flow cytometric analysis showed that treatment with 150 microM H(2)O(2) or 120 microM 6-OHDA for 24 h caused 52.86% or 66.36% apoptotic cell, respectively, in PC 12 cells, but only 4.26% or 5.80% in PP35 cells. The cell viability measured by 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay indicated that H(2)O(2) and 6-OHDA induced a dose-dependent cell death on PC12 cells that were greatly remitted on PP35 cells. The viability of PP35 cells was even stronger than that of PC12 cells protected by glial cell line deprived neurotrophic factor (GDNF). The surviving PP35 cells remained normal cell morphology and showed positive with tyrosine hydroxylase (TH) immunocytochemical staining. These results indicate that baculovirus p35 gene possesses remarkable ability to rescue PC12 cells from death in experimental paradigms associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号