首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The opioid and cannabinoid systems co-operate to regulate physiological processes such as nociception and reward. The endocannabinoid system may be a component of the brain reward circuitry and thus play a role not only in cannabinoid tolerance/dependence, but also in dependence/withdrawal for other misused drugs. We provide evidence of a cannabinoid mechanism in an animal model of morphine drug-seeking behaviour, referred to as behavioural sensitization. The present study was designed to test the effects of the CB1 cannabinoid receptor antagonist SR141716A in two different phases of morphine sensitization (induction and expression) and to measure the brain contents of arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), the two main endogenous ligands for cannabinoid receptors in the different phases of morphine sensitization. The cannabinoid antagonist modified the signs of morphine sensitization when administered in the expression phase, whereas co-administration of SR141716A and morphine in the induction phase only slightly affected the behavioural responses, suggesting that CB1 receptor blockade attenuates the behavioural manifestations of morphine sensitization but not its development. AEA and 2-AG were affected differently by morphine during the two phases of behavioural sensitization. The alterations were in opposite directions and specific for the cerebral area analysed (caudate putamen, nucleus accumbens, hippocampus and prefrontal cortex). The results suggest that the endocannabinoid system undergoes profound changes during the different phases of sensitization to morphine in rats, providing a possible neurochemical basis for the previously observed cross-sensitization between opiates and cannabinoids.  相似文献   

2.
Anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the most active endocannabinoids at brain (CB1) cannabinoid receptors. CD1 mice lacking the CB1 receptors ("knockout" [KO] mutants) were compared with wildtype (WT) littermates for their ability to degrade AEA through an AEA membrane transporter (AMT) and an AEA hydrolase (fatty acid amide hydrolase, FAAH). The age dependence of AMT and FAAH activity were investigated in 1- or 4-month-old WT and KO animals, and found to increase with age in KO, but not WT, mice and to be higher in the hippocampus than in the cortex of all animals. AEA and 2-AG were detected in nmol/mg protein (microm) concentrations in both regions, though the hippocampus showed approximately twice the amount found in the cortex. In the same regions, 2-AG failed to change across groups, while AEA was significantly decreased (approximately 30%) in hippocampus, but not in cortex, of old KO mice, when compared with young KO or age-matched WT animals. In the open-field test under bright light and in the lit-dark exploration model of anxiety, young KO mice, compared with old KO, exhibited a mild anxiety-related behaviour. In contrast, neither the increase in memory performance assessed by the object recognition test, nor the reduction of morphine withdrawal symptoms, showed age dependence in CB1 KO mice. These results suggest that invalidation of the CB1 receptor gene is associated with age-dependent adaptive changes of endocannabinoid metabolism which appear to correlate with the waning of the anxiety-like behaviour exhibited by young CB1 KO mice.  相似文献   

3.
Cannabinoid compounds affect synaptic activity and plasticity in numerous brain areas by activating CB1 receptors (CB1). In hippocampus, varying results have been obtained on the extent and site of cannabinoid actions on excitatory transmission, ranging from no effect to complete obliteration of synaptic responses. Here we used the rat hippocampal slice preparation to study and compare the effect of various synthetic and endogenous CB1 ligands on excitatory synaptic transmission. The full CB1 agonist WIN55212-2 (WIN2) greatly decreased excitatory synaptic transmission by 62%. The effect of WIN-2 was concentration dependent (EC50 of 200 nM) and completely prevented by CB1 antagonists. The nondegradable partial CB1 agonist R1-methanandamide (mAEA) decreased transmission by 25% and the endocannabinoids 2-arachidonylglycerol (2-AG) and anandamide (AEA) had no significant effect. The action of AEA was improved by inhibiting its degradation but not its transport. The effect of 2-AG was enhanced upon inhibition of COX-2 but remained unchanged with blockade of monoacylglycerol lipase (MAGL). The observed effects were prevented by CB1 antagonists regardless of the ligand used, and paired-pulse paradigms pointed to presynaptic mechanisms of cannabinoid action. Our results show that cannabinoid effects on neuronal activity differ widely according to the CB1 ligand used. We observed large differences between full (synthetic) and partial (endogenous) CB1 agonists in altering synaptic transmission, notably because of the involvement of active degradation mechanisms.  相似文献   

4.
The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.  相似文献   

5.
The two major endocannabinoid transmitters, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are degraded by distinct enzymes in the nervous system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. FAAH and MAGL inhibitors cause elevations in brain AEA and 2-AG levels, respectively, and reduce pain, anxiety, and depression in rodents without causing the full spectrum of psychotropic behavioral effects observed with direct cannabinoid receptor-1 (CB1) agonists. These findings have inspired the development of several classes of endocannabinoid hydrolase inhibitors, most of which have been optimized to show specificity for either FAAH or MAGL or, in certain cases, equipotent activity for both enzymes. Here, we investigate an unusual class of O-hydroxyacetamide carbamate inhibitors and find that individual compounds from this class can serve as selective FAAH or dual FAAH/MAGL inhibitors in vivo across a dose range (0.125-12.5 mg kg(-1)) suitable for behavioral studies. Competitive and click chemistry activity-based protein profiling confirmed that the O-hydroxyacetamide carbamate SA-57 is remarkably selective for FAAH and MAGL in vivo, targeting only one other enzyme in brain, the additional 2-AG hydrolase ABHD6. These data designate O-hydroxyacetamide carbamates as a versatile chemotype for creating endocannabinoid hydrolase inhibitors that display excellent in vivo activity and tunable selectivity for FAAH-anandamide versus MAGL (and ABHD6)-2-AG pathways.  相似文献   

6.
A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).  相似文献   

7.
Endocannabinoids act as neuroprotective molecules promptly released in response to pathological stimuli. Hence, they may represent one component of protection and/or repair mechanisms mobilized by dopamine (DA) neurons under ischemia. Here, we show that the endocannabinoid 2-arachidonoyl-glycerol (2-AG) plays a key role in protecting DA neurons from ischemia-induced altered spontaneous activity both in vitro and in vivo. Accordingly, neuroprotection can be elicited through moderate cannabinoid receptor type-1 (CB1) activation. Conversely, blockade of endocannabinoid actions through CB1 receptor antagonism worsens the outcome of transient ischemia on DA neuronal activity. These findings indicate that 2-AG mediates neuroprotective actions by delaying damage and/or restoring function of DA cells through activation of presynaptic CB1 receptors. Lastly, they point to CB1 receptors as valuable targets in protection of DA neurons against ischemic injury and emphasize the need for a better understanding of endocannabinoid actions in the fine control of DA transmission.  相似文献   

8.
Fride E  Shohami E 《Neuroreport》2002,13(15):1833-1841
Since the identification and cloning of the first cannabinoid (CB1) receptor and the subsequent discovery of the endogenous cannabinoid ligands (endocannabinoids), anandamide, 2-arachidonoyl glycerol (2-AG) and noladin ether, a intensive search for their function in health and disease has been launched. The endocannabinoids in the central nervous system bind Gi/o coupled CB1 receptors that modulate adenylyl cyclase, ion channels and extracellular signal-regulated kinases. The present review discusses the nature of endocannabinoid (anandamide and 2-AG) neurotransmission, the activity of cannabinoids and the possibility that some of these activities are mediated via a receptor, yet to be discovered, which is distinct from the brain specific CB1 receptor. Three physiological functions in which the endocannabinoids play a critical role are also discussed: embryonal implantation, feeding and appetite, and neuroprotection.  相似文献   

9.
In the present study, we examined the effects of endogenous ligand 2-arachidonoylglycerol (2-AG) on naloxone-precipitated withdrawal in morphine-dependent mice, in comparison with that of two cannabinoid agonists, an ingredient of Cannabis sativa Delta(8)-tetrahydrocannabinol (Delta(8)-THC) and the synthetic cannabinoid CB1 receptor agonist HU-210. 2-AG at a dose of 10 microg per mouse (i.c.v.) significantly inhibited both jumping and forepaw tremor as signs of withdrawal following naloxone challenge in morphine-dependent mice. Furthermore, both Delta(8)-THC and HU-210 significantly attenuated these symptoms of withdrawal in morphine-dependent mice. Therefore, it is suggested that inactivation of the endogenous cannabinoid system is related to the induction of withdrawal syndrome in morphine-dependent mice. Moreover, hyperlocomotor activity in morphine-dependent mice was markedly increased by Delta(8)-THC 10 mg/kg, which had no effect in naive mice. This finding suggested that in morphine dependence, upregulation of cannabinoid CB1 receptors occurred. Non-psychoactive CB1 receptor agonists or accelerators of endocannabinoid synthesis may be potential as therapeutic drugs for opiate withdrawal symptoms.  相似文献   

10.
The arachidonic acid derivative, 2-arachidonoyl-glycerol (2-AG), was initially isolated from gut and brain; it is also produced and released from blood and vascular cells. Many of the 2-AG-induced cellular responses (i.e., neuromodulation, cytoprotection and vasodilation) are mediated by cannabinoid receptors CB1 and CB2. The findings presented here demonstrate the expression of CB1, CB2 and TRPV1 receptors on cerebromicrovascular endothelial cells (HBEC). The expression of TRPV1, CB1 and CB2 receptor mRNA and proteins were demonstrated by RT-PCR and polyclonal antibodies, respectively. The endocannabinoid 2-AG, and other related compounds [anandamide (ANA), methanandamide (m-ANA), N-(4-hydroxyphenyl-arachidonyl-ethanolamide) (AM404) and capsaicin] dose-dependently stimulated Ca2+ influx in HBEC. The selective TRPV1 receptor antagonist (capsazepine), CB1 receptor antagonist (SR141716A) and CB2 receptor antagonist (SR144528) inhibited these responses. The effects of capsaicin, a specific agonist for TRPV1 receptors, were inhibited by capsazepine, but only weakly by CB1 or CB2 receptor antagonists. 2-AG also induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP); this response was mediated by VR1 receptors. These studies clearly indicate that 2-AG and other related compounds may function as agonists on VR1 receptors, as well as CB1 and CB2 receptors, and implicated these factors in various HBEC functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号