首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
To determine whether frequent seizures can cause deficits in learning and behavior, immature genetically epilepsy-prone rats (GEPRs) were subjected to 66 audiogenic stimulations (Group 1). GEPR littermates were handled and placed in the sound chamber but were not stimulated (Group 2). Group 3 comprised genetically epilepsy-resistant rats (GERRs) who received audiogenic stimulations but had no seizures. After 3 weeks of stimulations the rats were tested for learning, memory, and behavior using the T-maze, water maze, open field activity test, home cage intruder test, and handling test. When compared with the control GEPRs and GERRs, Group 1 rats reached criteria less frequently in the T-maze, required longer times to find the platform in the water maze, and were less active in the open field activity test, less aggressive in the home cage intruder test, and more irritable and aggressive in the handling test. This study demonstrates that frequent, brief seizures in immature animals result in significant detrimental changes in learning, memory, activity level, and behavior.  相似文献   

2.
Recurrent seizures leading to status epilepticus were induced in rats by a 10 mg/kg subcutaneous injection of kainic acid (KA). After a 4-day recovery period, the KA-treated animals showed a syndrome of increased activity in an open field, hyperreactivity in response to handling, and deficits in acquisition of both passive avoidance and spatial learning tasks. The second experiment demonstrated that KA also caused deficits in learning to approach a visible platform in a water maze. Two months after the initial treatment, the animals were still hyperactive and deficient in passive avoidance acquisition; however, they performed normally on the spatial learning task. These results reflect both the convulsive effects of KA, which produce transient retardation, and the brain damage to limbic system structures, which accounts for the permanent deficits.  相似文献   

3.
Yin S  Guan Z  Tang Y  Zhao J  Hong J  Zhang W 《Brain research》2005,1053(1-2):195-202
Previous epilepsy-related gene screen identified a spontaneous recurrent seizure (SRS)-related gene named epilepsy-related gene (ERG1) that encodes N-ethylmaleimide-sensitive fusion protein (NSF). To explore whether spatial learning memory deficits are relevant to SRS and whether hippocampal NSF expression is altered by SRS, we used the kainic acid (KA)-induced epilepsy animal model. SRS was monitored for 3 weeks after injection of a single convulsive dose of KA. KA-treated rats with SRS, KA-treated rats without SRS, and saline-treated rats were then measured in Morris water maze. In this spatial learning task, KA-treated rats with SRS performed poorer compared to those without SRS and those treated with saline. During the subsequent probe trials, KA-treated rats with SRS spent less swim path and time in the target quadrant but more swim path and time in the opposite quadrant, and showed fewer platform crossings. Moreover, in situ hybridization and immunohistochemistry showed that both ERG1/NSF mRNA and NSF immunoreactive expression were down-regulated in the CA1 and dorsal dentate gyrus cells (dDGCs) of the hippocampus, and interestingly, tyrosine hydroxylase (TH) immunoreactive dopamine (DA) neurons were lost in ventral tegmental area (VTA) in the KA rats with SRS. These data demonstrate that SRS impairs spatial learning memory and suggest that the down-regulation of NSF expression pattern in the hippocampus and the loss of DA neurons in VTA might contribute to the spatial learning memory deficits induced by SRS.  相似文献   

4.
In adult rats, intraperitoneal injection of kainate (KA) results in sustained status epilepticus and persistent behavioral comorbidities such as hyperexcitability, anxiety, and altered response to environmental cues. Intrahippocampal KA also results in sustained status epilepticus and continuous high frequency oscillations in the electroencephalograph (EEG), although subsequent behavioral side effects are unknown. We hypothesized that retigabine, a recently discovered anticonvulsant and potent positive modulator of Kv7 channels, may attenuate seizure-induced behavioral abnormalities. Status epilepticus was induced by administration of KA either intraperitoneally (15 mg/kg) or by single intrahippocampal injection (1.0 μg/0.5 μL). After 24 h, half of systemically KA-treated animals that reached stage 6 seizures were injected once daily with retigabine (5 mg/kg) for 14 continuous days. All groups underwent three behavioral tests — capture and handling, open field, and elevated plus maze — 24 h following the last retigabine treatment and were sacrificed at 25–28 days. In the capture and handling test, systemic KA treatment resulted in frisky behavior and resistance to capture with wild attempts to escape during the 1st, 2nd, and 3rd weeks of the observation period. In contrast, these behaviors were attenuated in KA + retigabine-treated animals. In the open-field test, KA-treated animals spent more time in the center zone, but KA + retigabine-treated rats had greater overall activity compared with those having vehicle, KA, or retigabine-only treatment. In the elevated plus maze, KA + retigabine-treated animals traveled greater distances in open and closed arms (proximal and distal) compared with controls, also signifying anxiety reduction. Retigabine-only-treated rats traveled more in the open proximal arms compared with controls, indicating increased hyperlocomotion in normotensive rats. Although treatment with KA + retigabine resulted in anxiolytic-like effects in all three behavioral tasks compared with vehicle, this group did not significantly differ from systemically KA-treated rats in most measurements in open-field and elevated plus maze tasks, suggesting that retigabine may also cause hyperlocomotion unrelated to anxiety level. Despite that intrahippocampal KA-treated rats displayed comparable seizure behavior, epileptiform activity, and hippocampal injury, their behavior resembled the controls, suggesting that molecular and subsequent cellular changes are also partially responsible for anxiolytic-like effects and that these results are likely independent of the hippocampus.  相似文献   

5.
Abnormal activity in corticolimbic circuits during development may be a predisposing factor for schizophrenia. Permanent or temporary lesions of limbic structures such as the ventral hippocampus and basolateral amygdala in rats on postnatal day (PND) 7 result in functional changes similar to some behavioural and cognitive signs of schizophrenia. The present experiments tested whether transient increases in the neural activity of corticolimbic circuits on PND 7 would result in similar behavioural changes. Long-Evans rats were treated with either kainic acid (KA, 1.5 mg/kg, i.p.) or saline on PND 7 and tested for prepulse inhibition (PPI) of the acoustic startle response and spontaneous locomotor activity both in a novel environment and following amphetamine treatment before puberty (PND 35) and in early adulthood (PND 56). In subgroups of animals PPI was also measured following apomorphine administration (0.2 mg/kg) and spatial learning and memory were tested in the water maze. Rats treated with KA were indistinguishable from saline-treated animals on PND 35. However, on PND 56, KA-treated animals showed a subtle consistent decrease in PPI relative to control animals, but did not show increased sensitivity to the disruptive effects of a low dose of apomorphine on PPI. Locomotor responses to novelty or amphetamine were not reliably altered in the KA-treated animals. KA- and saline-treated animals performed similarly in the water maze. These results support the hypothesis that neural hyperactivity on PND 7 in rats causes behavioural changes in early adulthood that resemble some symptoms of schizophrenia. These pharmacological data suggest that the changes are not mediated by postsynaptic alterations in mesolimbic dopamine transmission.  相似文献   

6.
There is controversy as to whether prolonged seizures are more detrimental to the immature than the mature brain. To evaluate this question continuous hippocampal stimulation was used to induce prolonged limbic seizures in 20-, 30- and 60-day-old rats. The long-term effects on learning and activity level were then studied at age 80 days using the Morris water maze, a test of spatial learning and memory, and the open field test, a test of an animal's reaction to a novel environment. Limbic status epilepticus in 60-day-old but not 20- and 30-day-old rats caused long-term impairment of learning in the Morris water maze. No differences were noted between the control and the experimental animals in the open field test. These results suggest that the age of seizure onset is an important determinant of long-term cognitive sequelae.  相似文献   

7.
Sayin U  Sutula TP  Stafstrom CE 《Epilepsia》2004,45(12):1539-1548
PURPOSE: Seizures in the developing brain cause less macroscopic structural damage than do seizures in adulthood, but accumulating evidence shows that seizures early in life can be associated with persistent behavioral and cognitive impairments. We previously showed that long-term spatial memory in the eight-arm radial-arm maze was impaired in rats that experienced a single episode of kainic acid (KA)-induced status epilepticus during early development (postnatal days (P) 1-14). Here we extend those findings by using a set of behavioral paradigms that are sensitive to additional aspects of learning and behavior. METHODS: On P1, P7, P14, or P24, rats underwent status epilepticus induced by intraperitoneal injections of age-specific doses of KA. In adulthood (P90-P100), the behavioral performance of these rats was compared with that of control rats that did not receive KA. A modified version of the radial-arm maze was used to assess short-term spatial memory; the Morris water maze was used to evaluate long-term spatial memory and retrieval; and the elevated plus maze was used to determine anxiety. RESULTS: Compared with controls, rats with KA seizures at each tested age had impaired short-term spatial memory in the radial-arm maze (longer latency to criterion and more reference errors), deficient long-term spatial learning and retrieval in the water maze (longer escape latencies and memory for platform location), and a greater degree of anxiety in the elevated plus maze (greater time spent in open arms). CONCLUSIONS: These findings provide additional support for the concept that seizures early in life may be followed by life-long impairment of certain cognitive and behavioral functions. These results may have clinical implications, favoring early and aggressive control of seizures during development.  相似文献   

8.
As a first step, the present experiment aimed at characterizing learning and memory capabilities, as well as some motor and sensorimotor faculties, in aged (24-26.5 months) Long-Evans female rats. As a second step, a psychopharmacological approach was undertaken in order to examine the sensitivity of aged rats to muscarinic blockade and to cholinomimetic treatments. Young adult (3-5.5 months) and aged rats were tested for beam-walking performance, locomotor activity in the home cage and an open field, and spatial learning/memory performance in a water maze and a radial maze. Spontaneous alternation rates were assessed in a T-maze. Statistical analysis discriminated between aged rats showing moderate impairment (AMI) and those showing severe impairment (ASI) in the water maze test. Beside their different degrees of impairment in the water maze, AMI and ASI rats were similarly (no significant difference) impaired in beam-walking capabilities, home cage activity and radial maze performance. In the spontaneous alternation task aged rats were not impaired and, in the open-field test, AMI rats were hypoactive, but not as much as ASI rats. Neither of the cognitive deficits was correlated with a locomotor or a sensorimotor variable, or with the body weight. When tested in the radial maze, a low dose of scopolamine (0.1 mg/kg i.p.) produced memory impairments which were significant in AMI and ASI rats, but not in young rats. Combined injections of scopolamine and physostigmine (0.05 and 0.1 mg/kg) or tacrine (THA, 3 mg/kg) showed physostigmine (0.1 mg/kg) to compensate for the scopolamine-induced impairments only in AMI rats. whereas THA was efficient in both AMI and ASI rats. The results indicate: (i) that rats with different degrees of spatial memory impairment in the water maze are similarly hypersensitive to muscarinic blockade when tested in a radial maze test; and (ii) that under the influence of a dose of scopolamine which is subamnesic in young rats, aged rats respond to anticholinesterase treatments according to the level of performance achieved in the water maze: moderately impaired rats are sensitive to both physostigmine and THA, whereas more severely impaired rats are sensitive only to THA.  相似文献   

9.
Prenatal choline supplementation can protect rats against cognitive deficits induced by status epilepticus induced by the cholinergic agent pilocarpine [J. Neurosci. 20 (2000) 1]. In the present day, we have extended this novel finding by investigating the effects of pre- and postnatal choline supplementation in memory deficits associated with status epilepticus induced with kainic acid (KA). In the first experiment pregnant rats received a normal, choline-supplemented, or choline deficient diet starting on the 11th day of gestation and continuing until postnatal (P) 7. At P42, rats were given a convulsant dosage of KA. Two weeks following the KA-induced status epilepticus rats underwent testing of visual-spatial memory using the Morris water maze test. Rats receiving supplemental choline performed better in the water maze than the deficient and control groups. Moreover, the activity of hippocampal choline acetyltransferase was 18% lower in the choline deficient animals as compared with the other two groups. In the second experiment we administered KA to P35 rats that had been given a normal diet. Following the status epilepticus the rats were given a choline-supplemented or control diet for 4 weeks and then tested in the water maze. Rats receiving choline supplementation performed far better than rats receiving a regular diet. This study demonstrates that choline supplementation prior to or following KA-induced status epilepticus can protect rats from memory deficits induced by status epilepticus.  相似文献   

10.
Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号