首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Peroxynitrite is responsible for nitration in vivo, whereas myeloperoxidase can also catalyze protein nitration in the presence of high NO2(-) levels. Recent reports of myeloperoxidase-mediated enzyme inactivation or lipid peroxidation have suggested a role of myeloperoxidase in various pathological conditions. To clarify the role of myeloperoxidase in ischemic brain injury, the authors measured nitrotyrosine formation and infarct volume in myeloperoxidase-deficient or wild-type mice subjected to 2-hour focal cerebral ischemia-reperfusion. Twenty-four hours after reperfusion, infarct volume was significantly larger in myeloperoxidase-deficient mice than in wild-type mice (81 +/- 20 mm(3) vs. 52 +/- 13 mm(3), P < 0.01), and nitrotyrosine levels in the infarct region were higher in myeloperoxidase-deficient mice than in wild-type mice (13.4 +/- 6.1 microg/mg vs. 9.8 +/- 4.4 microg/mg, P = 0.13). Fourteen hours after reperfusion, the nitrotyrosine level was significantly higher in myeloperoxidase-deficient mice than in wild-type mice (3.3 +/- 2.9 microg/mg vs. 1.4 +/- 0.4 microg/mg, P < 0.05). The authors conclude that the absence of myeloperoxidase increases ischemic neuronal damage in vivo, and that the myeloperoxidase-mediated pathway is not responsible for the nitration reaction in cerebral ischemia-reperfusion.  相似文献   

2.
The purpose of this study was to establish the dynamics of nitrotyrosine (NO2-Tyr) formation and decay during the rise of NO2-Tyr in rat brain subjected to 2-hour focal ischemia-reperfusion, and to evaluate the role of inducible nitric oxide synthase in the rise. The authors first determined the half life of NO2-Tyr in rat brain at 24 hours after the start of reperfusion by blocking NO2-Tyr formation with N(G)-monomethyl-L-arginine and after the decay of NO2-Tyr by means of a hydrolysis/HPLC procedure. The values obtained were approximately 2 hours in both peri-infarct and core-of-infarct regions. Using the same hydrolysis/HPLC procedure, the ratio of nitrotyrosine to tyrosine from the 2-hour occlusion to as much as 72 hours after the start of reperfusion was measured in the presence and absence of aminoguanidine (100 mg/kg intraperitoneally twice a day). In the absence of aminoguanidine, the ratio of NO2-Tyr in the peri-infarct and core-of-infarct regions reached 0.95% +/- 0.34% and 0.52% +/- 0.34%, respectively, at 1 hour after the start of reperfusion. The elevated levels persisted until 48 hours, then declined. The peri-infarct region showed the highest percent NO2-Tyr level, followed by the core of infarct, then the caudoputamen. Aminoguanidine significantly reduced NO2-Tyr formation (up to 90% inhibition) during 24 to 48 hours. The authors conclude that inducible nitric oxide synthase is predominantly responsible for NO2-Tyr formation, at least in the late phase of reperfusion. These results have important implications for the therapeutic time window and choice of nitric oxide synthase inhibitors in patients with cerebral infarction.  相似文献   

3.
Peroxynitrite production in cerebral ischemia]   总被引:4,自引:0,他引:4  
Peroxynitrite, generated by the reaction of nitric oxide and superoxide, has toxic effects including oxidation of sulfhydryls, lipid peroxidation and nitration of amino acid residues. So far peroxynitrite has not yet been detected in the ischemic brain because of its short half-life. Recently, we have succeeded in detecting 3-nitro-L-tyrosine, which is considered to be a footprint of peroxynitrite, in ischemic brain. Production of nitrotyrosine started during the ischemic period, increased after reperfusion, peaked at 48 hours, then declined up to 72 hours. Nitrotyrosine level was highest in the peri-infarct region, second highest in the core-of-infarct region, and lowest in the caudoputamen and the non-infarct region. Studies using pharmacological agents including MK-801, 7-nitroindazole and aminoguanidine suggest that peroxynitrite production originates from nNOS in the early phase of reperfusion, and from iNOS in the later phase of reperfusion. Further, the immunohistochemical study indicates that iNOS, located mainly in vascular cells, is predominantly responsible for nitrotyrosine production. Thus, peroxynitrite production depends on the stage of evolution of the ischemic process and on the cell type producing NO. These findings have important implications for the therapeutic time window and choice of NOS inhibitors in patients with cerebral infarction.  相似文献   

4.
Excitatory amino-acid transporters (EAATs) transport glutamate into cells under physiologic conditions. Excitatory amino-acid transporter type 3 (EAAT3) is the major neuronal EAAT and also uptakes cysteine, the rate-limiting substrate for synthesis of glutathione. Thus, we hypothesize that EAAT3 contributes to providing brain ischemic tolerance. Male 8-week-old EAAT3 knockout mice on CD-1 mouse gene background and wild-type CD-1 mice were subjected to right middle cerebral artery occlusion for 90 minutes. Their brain infarct volumes, neurologic functions, and brain levels of glutathione, nitrotyrosine, and 4-hydroxy-2-nonenal (HNE) were evaluated. The EAAT3 knockout mice had bigger brain infarct volumes and worse neurologic deficit scores and motor coordination functions than did wild-type mice, no matter whether these neurologic outcome parameters were evaluated at 24 hours or at 4 weeks after brain ischemia. The EAAT3 knockout mice contained higher levels of HNE in the ischemic penumbral cortex and in the nonischemic cerebral cortex than did wild-type mice. Glutathione levels in the ischemic and nonischemic cortices of EAAT3 knockout mice tended to be lower than those of wild-type mice. Our results suggest that EAAT3 is important in limiting ischemic brain injury after focal brain ischemia. This effect may involve attenuating brain oxidative stress.  相似文献   

5.
6.
Zhao X  Haensel C  Araki E  Ross ME  Iadecola C 《Brain research》2000,872(1-2):215-218
We investigated whether the reduction in ischemic brain injury in inducible nitric oxide synthase (iNOS) null mice is related to the iNOS gene copy number, and whether such protection is long lasting. The middle cerebral artery (MCA) was occluded in heterozygous (+/-) and homozygous (-/-) iNOS null mice, as well as in wild-type littermates (iNOS +/+). Four days after MCA occlusion, total infarct volume was reduced by 29% in iNOS -/- mice (n=6; P<0.05) and by 14% in iNOS+/-mice (n=8; P<0.05), compared to iNOS +/+ (n=8). Ten days after MCA occlusion, total infarct volume was still reduced in iNOS +/- (-14%) and -/- mice (-21%; P<0.05 from iNOS +/+; n=8/group). These data indicate that the reduction in infarct volume is greater in iNOS -/- than in iNOS +/- mice and that the effect is stable in time. We conclude that the reduction in ischemic damage conferred by iNOS deletion exhibits a gene-dosing effect and that the protection is long lasting.  相似文献   

7.
Lee JC  Cho GS  Kim HJ  Lim JH  Oh YK  Nam W  Chung JH  Kim WK 《Glia》2005,50(2):168-181
In cerebral ischemic insults, activated inflammatory cells such as microglia and macrophages may be implicated in the pattern and degree of ischemic injury by producing various bioactive mediators. In the present study, we provide the evidence that activated microglia/macrophages accelerate cerebral ischemic injury by overexpression of inducible nitric oxide synthase (iNOS). To activate microglia/macrophages, a potent inflammation inducer lipopolysaccharide (LPS, 5 microg/5 microl) was microinjected into rat corpus callosum. Isolectin B4-positive microglia/macrophages were abundantly observed in ipsilateral hemisphere at 1 day after LPS injection. RT-PCR showed that LPS injection induced iNOS mRNA expression mostly in microglia/macrophages, peaking in intensity at 15 h after LPS injection. While ischemic injury was little evoked in control rats by 2-h middle cerebral artery occlusion (MCAO) followed by 3-h reperfusion, it was markedly increased in rats pre-injected with LPS 1 day before MCAO. However, no significant difference between control and LPS-pretreated groups was observed after 24-h reperfusion. The increased ischemic injury in LPS-treated rats was well correlated with iNOS level expressed over 3 orders of magnitude than in LPS-untreated rats. Immunohistochemical studies showed that iNOS- and nitrotyrosine (a peroxynitrite marker)-positive cells were prominent throughout the infarct area. NOS inhibitors aminoguanidine or N(G)-nitro-L-arginine, simultaneously injected with LPS, reduced the iNOS immunoreactivity and infarct volume, especially in penumbra regions. Total glutathione levels in ischemic regions were decreased more in LPS pre-injected rats than in control ones. Further defining the role of NO in cerebral ischemic insults would provide the rationale for new therapeutic strategies based on modulation of microglial and macrophageal NO production in the brain.  相似文献   

8.
We have characterized the temporal changes in iNOS, MnSOD and nitrotyrosine immune reactivity in a rat model of permanent middle cerebral artery occlusion under acute hyperglycemic or normoglycemic conditions followed by either 3- or 24-h recovery. We found that the macroscopic labeling pattern for all three antibodies colocalized with the ischemic core and penumbra which was determined by cresyl violet histological evaluation in adjacent sections. Hyperglycemia induced prior to ischemia resulted in earlier infarction which correlated with increased immunoreactivity for iNOS, MnSOD and nitrotyrosine. In the penumbral region of the frontal cortex, labeling of specific cell structures was largely limited to cortical neurons near the corpus callosum and was apparent earlier in the hyperglycemic rats. Increased polymorphonuclear leukocyte adhesion in blood vessels was observed at 24 h in the hyperglycemic group. At both of the recovery times studied, we observed only minor vascular staining for nitrotyrosine and none for iNOS. Our results are consistent with hyperglycemia resulting in an early and concomitant increase in both superoxide and nitric oxide production which can lead to peroxynitrite formation that then nitrates tyrosine residues. It would appear that hyperglycemic ischemia contributes to the early induction of key enzymes involved in nitric oxide bioavailability.  相似文献   

9.
Cerebral ischemia induces the expression of several growth factors and cytokines, which protect neurons against ischemic insults. Recent studies showed that granulocyte colony-stimulating factor (G-CSF) has a neuroprotective effect through the signaling pathway for the antiapoptotic cascade. The current study was designed to assess the neuroprotective mechanisms of G-CSF in ischemia/reperfusion injury using bone marrow chimera mice known to express enhanced green fluorescent protein (EGFP). Mice were subjected to ischemia/reperfusion and divided into two groups: those treated with G-CSF (G-CSF group) and vehicle (control group) (n = 35 in each group). Immunohistochemistry and immunoblotting for antiapoptotic protein, nitrotyrosine, and inducible nitrate oxide synthase (iNOS) were performed. G-CSF significantly reduced stroke volume (34%, P < 0.006). G-CSF upregulated Stat3, pStat3, and Bcl-2 (P < 0.05), and suppressed iNOS and nitrotyrosine expression. In EGFP chimera mice, G-CSF decreased the migration of Iba-1/EGFP-positive bone marrow-derived monocytes/macrophages and increased intrinsic microglia/macrophages at ischemic penumbra (P < 0.05), suggesting that bone marrow-derived monocytes/macrophages are not involved in G-CSF-induced reduction of ischemic injury size. Our study indicated that G-CSF exerts a neuroprotective effect through the direct activation of antiapoptotic pathway, and suggested that G-CSF is important for expansion of the therapeutic time window in patients with cerebral ischemia.  相似文献   

10.
BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/repcrfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after reperfusion, cerebral inf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号