首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Genetic differences among patients suffering from Major Depression are likely to contribute to interindividual differences in medication treatment response. Thus, the identification of gene variants affecting drug response is needed in order to be able to predict response to psychopharmacological drugs. This study analyzed a possible association of the common A644G single nucleotide polymorphism (SNP) within intron 13 of the monoamine oxidase B (MAOB) gene with antidepressant treatment response. The study population consisted of n = 102 patients with major depression (criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition; DSM-IV) participating in a randomized double-blind controlled clinical trial, conducted at 50 centers in Germany, comparing the efficacy of mirtazapine and paroxetine during 6 weeks of treatment. Overall, female patients homozygous for the A-allele had a significantly faster and more pronounced antidepressant treatment response than AG/GG-carriers. In paroxetine-treated females these differences remained statistically significant. In mirtazapine-treated females homozygous for the A-allele compared to AG/GG-carriers, HAMD-17 scores during the study period were constantly and markedly lower, but not statistically different. In males, we found no association between the MAOB A644G intron 13 SNP and antidepressant treatment response. Our data provide first suggestive evidence that the MAOB A644G SNP is involved in the outcome of treatment with mirtazapine or paroxetine in females with major depression. To confirm the role of the MAOB A644G gene variant in antidepressant treatment response, independent replications are needed. If replicated, the MAOB A644G polymorphism could be considered useful for prospective confirmatory pharmacogenetic trials in patients with major depression.  相似文献   

2.

Background

Integrin αIIbβ3 mediates platelet adhesion, aggregation and fibrin clot retraction. These processes require activation of αIIbβ3 and post-ligation signaling. Disulfide bond exchanges are involved in αIIbβ3 and αvβ3 activation.

Methods

In order to investigate the role of integrin activation and disulfide bond exchange during αIIbβ3- and αvβ3-mediated clot retraction, we co-expressed in baby hamster kidney cells wild-type (WT) human αIIb and WT or mutated human β3 that contain single or double cysteine substitutions disrupting C523-C544 or C560-C583 bonds. Flow cytometry was used to measure surface expression and activation state of the integrins. Time-course of fibrin clot retraction was examined.

Results

Cells expressed WT or mutated human αIIbβ3 as well as chimeric hamster/human αvβ3. The αIIbβ3 mutants were constitutively active and the thiol blocker dithiobisnitrobenzoic acid (DTNB) did not affect their activation state. WT cells retracted the clot and addition of αvβ3 inhibitors decreased the retraction rate. The active mutants and WT cells activated by anti-LIBS6 antibody retracted the clot faster than untreated WT cells, particularly in the presence of αvβ3 inhibitor. DTNB substantially inhibited clot retraction by WT or double C523S/C544S mutant expressing cells, but minimally affected single C523S, C544S or C560S mutants. Anti-LIBS6-enhanced clot retraction was significantly inhibited by DTNB when added prior to anti-LIBS6.

Conclusions

Both αIIbβ3 and αvβ3 contribute to clot retraction without prior activation of the integrins. Activation of αIIbβ3, but not of αvβ3 enhances clot retraction. Both αIIbβ3 activation and post-ligation signaling during clot retraction require disulfide bond exchange.  相似文献   

3.
Neurological dysfunction is common in patients with D-2-hydroxyglutaric aciduria (DHGA). However, the mechanisms underlying the neuropathology of this disorder are far from understood. In the present study, we investigated the in vitro effects of D-2-hydroxyglutaric acid (DGA) at various concentrations (0.1-1.0 mM) on various parameters of the glutamatergic system, namely the basal and potassium-induced release of L-[3H]glutamate by synaptosomal preparations, Na(+)-dependent L-[3H]glutamate uptake by synaptosomal preparations and Na(+)-independent L-[3H]glutamate uptake by synaptic vesicles, as well as of Na(+)-independent and dependent L-[3H]glutamate binding to synaptic plasma membranes from cerebral cortex of male adult Wistar rats. We observed that DGA significantly increased synaptosomal L-[3H]glutamate uptake, without altering the other parameters. Although these findings do not support a direct excitotoxic action for DGA since the metabolite did not affect important parameters of the main neurotransmission system, they do not exclude a direct action of DGA on NMDA or other glutamate receptors. More comprehensive studies are therefore necessary to evaluate the exact role of DGA on neurotransmission.  相似文献   

4.
beta-N-oxalyl-amino-L-alanine, (L-BOAA), an excitatory amino acid, acts as an agonist of the AMPA subtype of glutamate receptors. It inhibits mitochondrial complex I in motor cortex and lumbosacral cord of male mice through oxidation of critical thiol groups, and glutaredoxin, a thiol disulfide oxido-reductase, helps maintain integrity of complex I. Since incidence of neurolathyrism is less common in women, we examined the mechanisms underlying the gender-related effects. Inhibition of complex I activity by L-BOAA was seen in male but not female mice. Pretreatment of female mice with estrogen receptor antagonist ICI 182,780 or tamoxifen sensitizes them to L-BOAA toxicity, indicating that the neuroprotection is mediated by estrogen receptors. L-BOAA triggers glutathione (GSH) loss in male mice but not in female mice, and only a small but significant increase in oxidized glutathione (GSSG) was seen in females. As a consequence, up-regulation of gamma-glutamyl cysteinyl synthase (the rate-limiting enzyme in glutathione synthesis) was seen only in male mouse CNS but not in females. Both glutathione reductase and glutaredoxin that reduce oxidized glutathione and protein glutathione mixed disulfides, respectively, were constitutively expressed at higher levels in females. Furthermore, glutaredoxin activity in female mice was down-regulated by estrogen antagonist indicating its regulation by estrogen receptor. The higher constitutive expression of glutathione reductase and glutaredoxin could potentially confer neuroprotection to female mice.  相似文献   

5.
Hyperprolactinaemia is often found in patients with schizophrenia and usually considered a consequence of antipsychotics. Prolactin levels were measured in 43 At-Risk Mental State individuals (ARMS) and 26 patients with First Episode Psychosis (FEP). Hyperprolactinaemia was found in 25.6% of ARMS and 46.2% of FEP. Within 60 antipsychotic-naïve ARMS and FEP, hyperprolactinaemia was found in 26.7%. Hyperprolactinaemia may be pre-existing in a subgroup of patients with schizophrenia.  相似文献   

6.
Of all cell types, motoneurons (MNs), are possibly the most difficult to maintain in culture, since their development and survival is conditioned by many factors that are still in the course of identification. This may also be the reason why they are difficult to transfect. We succeed to transfect these fragile cells with lipoplex [DOTAP:PC (10:1)-pGFP]-precoated coverslips. Here, we report that this original method, also termed 'surfection' does not perturbate MN development and survival while giving important transfection yield (15%). Lipofectamine 2000 and other well-known auxiliary lipids (DOPE, Chol) give lower surfection yields. The use of (DOTAP:PC)-based lipid vector also can be extended to several neural and non-neural cell lines with appreciable transfection yield such as a glial cell line (GCL) derived from rat spinal cord (65%), HeLa S3 (60%), COS-7 (30%) and HEK 293 cells (20%). The efficiency of DOTAP:PC (10:1) and Lipofectamine 2000 vectors in our surfection method are compared on standard HeLa S3 cell lines. Lipofectamine 2000 (72%) is slightly better than DOTAP:PC (10:1) (60%). However, the surfection method improved the efficiency of Lipofectamine 2000 itself (72%) as compared to the classical (62%) approach. In summary we have developed an original standard surfection protocol for both MN primary cultures and cell lines, thus simplifying laboratory practice; moreover, Lipofectamine 2000 used in this surfection method is more efficient for the cell lines than the manufacturer-recommended method. We emphasize that our method particularly spares fragile cells like MNs from injure and therefore, might be applied to other fragile cell type in primary cultures.  相似文献   

7.
Estrogens are developmental regulators of mitochondrial apoptotic pathway in the central nervous system, but little is known about their involvement in cytokine-induced apoptosis. In the present study, we evaluated effects of 17beta-estradiol on pro-inflammatory cytokine- and staurosporine-mediated activation of caspase-3 and LDH-release in primary neuronal/glial cell cultures of mouse hippocampal and neocortical cells at different stages of their development in vitro. Enzyme activities were determined with colorimetric methods 6 h, 14 h, 24 h, and 48 h after exposure to the apoptotic agents. Biochemical data were supported at the cellular level by Hoechst 33342 and MAP-2 stainings, which were carried out 48 h after the treatment. Cytokines (co-treatment with Il-1beta and TNFalpha; 1 ng/ml) increased caspase-3 activity in the hippocampal and neocortical cells up to over 200% of control values, and these effects were mostly observed on 2 and 7 days in vitro (DIV). Moderate, but significant cytokine-mediated increase in LDH-release was demonstrated in both tissues, especially on 7 and 12 DIV. Estradiol (100 nM) inhibited the activation of caspase-3 at early stage of development (2 DIV) in the hippocampal, but not in the neocortical cultures. The cytokine-induced activation of caspase-3 and LDH-release was inhibited by estradiol in estrogen receptor-independent way. These data point to a possible role of estrogens as non-estrogen receptor-related inhibitors of cytokine-activated apoptotic pathway in the developing central nervous system.  相似文献   

8.
Kumar V  Naik RS  Hillert M  Klein J 《Brain research》2006,1122(1):222-229
Brain edema is a serious consequence of hemispheric stroke and traumatic brain injury and contributes significantly to patient mortality. In the present study, we measured water contents in hippocampal slices as an in vitro model of edema formation. Excitotoxic conditions induced by N-methyl-D-aspartate (NMDA, 300 microM), as well as ischemia induced by oxygen-glucose deprivation (OGD), caused cellular edema formation as indicated by an increase of slice water contents. In the presence of furosemide, an inhibitor of the Na,K,Cl-cotransporter, NMDA-induced edema were reduced by 64% while OGD-induced edema were unaffected. The same observation, i.e., reduction of excitotoxic edema formation but no effect on ischemia-induced edema, was made with chloride transport inhibitors such as DIDS and niflumic acid. Under ischemic conditions, modulation of GABAA receptors by bicuculline, a GABA antagonist, or by diazepam, a GABAergic agonist, did not significantly affect edema formation. Further experiments demonstrated that low chloride conditions prevented NMDA-induced, but not OGD-induced, water influx. Omission of calcium ions had no effect. Our results show that NMDA-induced edema formation is highly dependent on chloride influx as it was prevented by low-chloride conditions and by various compounds that interfere with chloride influx. In contrast, OGD-induced edema observed in brain slices was not affected by modulators of chloride fluxes. The results are discussed with reference to ionic changes occurring during tissue ischemia.  相似文献   

9.
It has been demonstrated in different vertebrate species that the GABAA receptor complex is modulated by certain steroids. Theses results prompted work on the synthesis of these neurosteroids in the Central Nervous System. However, there are scarcely any studies analyzing their production or their modulatory effects on this receptor during development. In this work, the biosynthesis of [[14]C]progesterone metabolites as well as the characterization of their in vitro effects on the GABAA receptor complex in developing chick optic lobe were investigated. Studies on progesterone metabolism indicated that this steroid was converted to 5β-pregnanedione, 5β-pregan-3β-ol-20-one, and a 20-hydroxy derivative. Radioactive progesterone was completely metabolized at early embryonic stages, and a great proportion of 5β-pregnanedione was converted to 5β-pregnan-3β-ol-20-one. Thus, it seems that some of the steroidogenic activities present in chick optic lobe are age-dependent, though greater at embryonic stages. Results from in vitro modulation of [[3]H]flunitrazepam binding by 5β-pregnan-3β-ol-20-one indicated that this steroid produces a one-component-concentration dependent enhancement above control binding. 5β-pregnan-3β-ol-20-one EC50 values were 0.195±0.049, 0.101±0.017, 0.147±0.009, and 0.569±0.114 μM, and Emax were 22.37±1.57, 23.67±4.02, 29.01±1.08, and 15.11±2.67% at embryonic days 11, 14, hatching, and postnatal day 21, respectively.In conclusion, the biosynthesis of 5β-pregnan-3β-ol-20-one from progesterone in developing chick optic lobe, together with its ability to modulate the GABAA receptor present in such tissues, suggests a physiological role of this neurosteroid in developing avian Central Nervous System.  相似文献   

10.
INTRODUCTION: A heparin preparation with low antithrombin activity and different disaccharide composition than mammalian heparin was isolated from the body of the ascidian Styela plicata (Chordata-Tunicata). The disaccharide composition and the effect of the invertebrate glycan on venous and arterial models of thrombosis was investigated. METHODS AND RESULTS: High performance liquid chromatography of the products formed by a mixture of heparin lyases showed that the ascidian heparin is composed mainly by delta UA(2SO4)-1-->4-beta-d-GlcN(SO4) (47.5%), delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(6SO4) (38.3%) disaccharides and smaller amounts of the disaccharides delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(3SO4)(6SO4) (2.8%) and delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(3SO4) (8.0%). The invertebrate heparin has an aPTT activity of 18 IU/mg and an antithrombin-mediated antithrombin and anti-factor Xa activities 10-fold lower than that of mammalian heparin. In a venous model of thrombosis in the vena cava, S. plicata heparin inhibits only 80% of thrombosis at a dose 10-fold higher than that of the mammalian heparin that inhibits 100% of thrombosis. However, in an arterio-shunt model of arterial thrombosis, both S. plicata and mammalian heparin possess equivalent antithrombotic activities. It is also shown that at equivalent doses, ascidian heparin has a lower bleeding effect than mammalian heparin. CONCLUSION: The antithrombin-mediated anticoagulant activity of heparin polymers is not directly related to antithrombotic potency in the arterio-venous shunt. The results of the present work suggest that heparin preparations obtained from the body of S. plicata may have a safer therapeutic action in the treatment of arterial thrombosis than mammalian heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号