首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta‐analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task‐based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta‐analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting‐state fMRI data of 1,000 healthy participants. Thirty‐nine task‐based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI‐related meta‐analysis while 36 task‐based fMRI studies (421 AD patients and 512 healthy controls) were included in AD‐related meta‐analysis. The meta‐analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large‐scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD‐related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI‐related and AD‐related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large‐scale networks in fulfilling the cognitive tasks. These system‐level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. Hum Brain Mapp 36:1217–1232, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.

Background

Basal forebrain cholinergic system (BFCS) dysfunction is associated with cognitive decline in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Apolipoprotein E (APOE) ε2 is a protective genetic factor in AD and MCI, and cholinergic sprouting depends on APOE.

Objective

We investigated the effect of the APOE ε2 allele on BFCS functional connectivity (FC) in cognitively normal (CN) subjects and MCI patients.

Method

We included 60 MCI patients with APOE ε3/ε3, 18 MCI patients with APOE ε2/ε3, 73 CN subjects with APOE ε3/ε3, and 36 CN subjects with APOE ε2/ε3 genotypes who had resting-state functional magnetic resonance imaging data from the Alzheimer's disease Neuroimaging Initiative. We used BFCS subregions (Ch1-3 and Ch4) as seeds and calculated the FC with other brain areas. Using a mixed-effect analysis, we explored the interaction effects of APOE ε2 allele × cognitive status on BFCS-FC. Furthermore, we examined the relationships between imaging metrics, cognitive abilities, and AD pathology markers, controlling for sex, age, and education as covariates.

Results

An interaction effect on functional connectivity was found between the right Ch4 (RCh4) and left insula (p < 0.05, corrected), and between the RCh4 and left Rolandic operculum (p < 0.05, corrected). Among all subjects and APOE ε2 carriers, RCh4-left Insula FC was associated with early tau deposition. Furthermore, no correlation was found between imaging metrics and amyloid burden. Among all subjects and APOE ε2 carriers, FC metrics were associated with cognitive performance.

Conclusion

The APOE ε2 genotype may play a protective role during BFCS degeneration in MCI.  相似文献   

3.
Participants with mild cognitive impairment (MCI) have a higher likelihood of developing Alzheimer's disease (AD) compared to those without MCI, and functional magnetic resonance neuroimaging (fMRI) used with MCI participants may prove to be an important tool in identifying early biomarkers for AD. We tested the hypothesis that functional connectivity differences exist between older adults with and without MCI using resting-state fMRI. Data were collected on over 200 participants of the Rush Memory and Aging Project, a community-based, clinical-pathological cohort study of aging. From the cohort, 40 participants were identified as having MCI, and were compared to 40 demographically matched participants without cognitive impairment. MCI participants showed lesser functional connectivity between the posterior cingulate cortex and right and left orbital frontal, right middle frontal, left putamen, right caudate, left superior temporal, and right posterior cingulate regions; and greater connectivity with right inferior frontal, left fusiform, left rectal, and left precentral regions. Furthermore, in an alternate sample of 113, connectivity values in regions of difference correlated with episodic memory and processing speed. Results suggest functional connectivity values in regions of difference are associated with cognitive function and may reflect the presence of AD pathology and increased risk of developing clinical AD.  相似文献   

4.
Functional MRI (fMRI) has the potential to be used as a tool to detect biomarkers related to classifying Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Previous meta‐analyses suggest that during episodic memory tasks, MCI patients exhibit hyperactivation in the medial temporal lobe (MTL) while AD patients exhibit hypoactivation, compared to healthy older adults (HOAs). However, these previous studies have methodological weaknesses that limit the generalizability of the results. This quantitative meta‐analysis re‐examines the activation associated with episodic memory in AD and MCI as compared to cognitively normal populations to assess these commonly cited activation differences. A whole‐brain activation likelihood estimation based meta‐analysis was conducted on fMRI studies that examined episodic memory in HOA (n = 200), MCI (n = 131), and AD populations (n = 89; total n = 409). Diffuse activation was exhibited in the HOA sample, while activation was more limited in the clinical populations. Additionally, the HOA sample showed more activation in the right hippocampus compared to the AD sample. The MCI studies showed greater activation in the cerebellum compared to the HOA sample, potentially indicating a compensatory mechanism for verbal encoding. MTL hypoactivation in the AD sample is consistent with previous studies, but more evidence of MCI hyperactivation is needed before considering MTL activation as an early biomarker for the AD disease process.  相似文献   

5.

Objectives

The ability to resolve conflicts is indispensable to the function of daily life and decreases with cognitive decline. We hypothesized that subjects with different levels of cognitive impairment exhibit different conflict resolution performances and may be susceptible to interference effects at different stages.

Methods

Sixteen normal controls (NC), 15 mild cognitive impairment (MCI) and seven Alzheimer’s disease (AD) patients were recruited to perform in a modified Eriksen flanker task.

Results

We observed that the AD and MCI patients exhibited smaller accuracy rate and longer response time compared to NC subjects. Longer N2 and P300 latencies were observed in the AD group. Furthermore, the MCI group showed a longer latency than the NC group in the P300 latency. The magnitude of the perceptual and response interference effects was larger in the AD group than the other groups, and the MCI group significantly differed from the NC group at the perceptual level.

Conclusion

The ability to resolve conflict decreased with impaired cognition and the perceptual and response interference effects may be useful in distinguishing MCI and AD.

Significance

The perceptual or response interference effect may potentially be employed as a useful non-invasive probe for the clinical diagnosis of MCI and AD.  相似文献   

6.
《Alzheimer's & dementia》2013,9(3):284-294
BackgroundReliable blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) phenotypic biomarkers of Alzheimer’s disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature.MethodsA series of random-effects activation likelihood estimation (ALE) meta-analyses were conducted on studies of episodic memory encoding operations in AD and MCI samples relative to normal controls. ALE analyses were based on a thorough literature search for all task-based functional neuroimaging studies in AD and MCI published up to January 2010. Analyses covered 16 fMRI studies, which yielded 144 distinct foci for ALE meta-analysis.ResultsALE results indicated several regional task-based BOLD consistencies in MCI and AD patients relative to normal control subjects across the aggregate BOLD functional neuroimaging research literature. Patients with AD and those at significant risk (MCI) showed statistically significant consistent activation differences during episodic memory encoding in the medial temporal lobe, specifically parahippocampal gyrus, as well superior frontal gyrus, precuneus, and cuneus, relative to normal control subjects.ConclusionsALE consistencies broadly support the presence of frontal compensatory activity, medial temporal lobe activity alteration, and posterior midline “default mode” hyperactivation during episodic memory encoding attempts in the diseased or prospective predisease condition. Taken together, these robust commonalities may form the foundation for a task-based fMRI phenotype of memory encoding in AD.  相似文献   

7.
《Clinical neurophysiology》2021,132(11):2861-2869
ObjectiveResting-state EEG microstate is a promising neurophysiological tool to explore the temporal dynamics of cognitive activity. Till now, the microstate syntax is far from being fully understood in mild cognitive impairment (MCI) and Alzheimer’s disease (AD). We aim to investigate the possible explanation for the alterations of transition probabilities in microstate syntax between different stages of cognitive impairment.MethodsThe artefact-corrected resting-state EEG in patients with MCI (n = 46), AD (n = 43) and healthy controls (HC, n = 43) were used for microstate analysis. Four microstates were labeled A-D according to the study (Koenig et al., 2002).ResultsMicrostate duration, occurrence and coverage showed overall differences between HC, MCI and AD. Duration and coverage B increased significantly in AD compared with HC and MCI. Coverage C decreased significantly in AD compared with MCI. Microstate syntax had specialized single transitions in MCI and AD. Transitions between symmetrical (C and D) and asymmetrical (A and B) classes showed a decreased pattern. It was only in MCI that an increased transition from A to C was found and only in AD an increased transition from A to B was found. Besides, a negative spearman’s correlation was found between the transition probability from A to B and Mini-Mental State Examination (MMSE) scores.ConclusionAltered resting-state EEG microstates in particular specialized single transitions in microstate syntax were showed in MCI and AD.SignificanceFor the first time, we discovered which single transitions between pairs of microstates play an important role in microstate syntax in different stages of cognitive impairment.  相似文献   

8.
《Alzheimer's & dementia》2008,4(4):265-270
BackgroundBrain imaging studies of early Alzheimer's disease (AD) have shown decreased metabolism predominantly in the posterior cingulate cortex (PCC), medial temporal lobe, and inferior parietal lobe. This study investigated functional connectivity between these regions, as well as connectivity between these regions and the whole brain.MethodsFunctional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) studies were performed in subjects with early AD, mild cognitive impairment (MCI), and normal controls.ResultsThe data indicate both decreased fiber connections and disrupted connectivity between the hippocampus and PCC in early AD. The MCI group showed reduced fiber numbers derived from PCC and hippocampus to the whole brain.ConclusionsThe fMRI and DTI results confirmed decreased connectivity from both the PCC and hippocampus to the whole brain in MCI and AD and reduction in connectivity between these two regions, which plausibly represents an early imaging biomarker for AD.  相似文献   

9.
Cognitive reserve (CR) shows protective effects in Alzheimer’s disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC?=?0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.  相似文献   

10.

Aims

Alterations in neuronal activity and cerebral hemodynamics have been reported in idiopathic generalized epilepsy (IGE) patients, possibly resulting in neurovascular decoupling; however, no neuroimaging evidence confirmed this disruption. This study aimed to investigate the possible presence of neurovascular decoupling and its clinical implications in childhood IGE using resting-state fMRI and arterial spin labeling imaging.

Methods

IGE patients and healthy participants underwent resting-state fMRI and arterial spin labeling imaging to calculate degree centrality (DC) and cerebral blood flow (CBF), respectively. Across-voxel CBF-DC correlations were analyzed to evaluate the neurovascular coupling within the whole gray matter, and the regional coupling of brain region was assessed with the CBF/DC ratio.

Results

The study included 26 children with IGE and 35 sex- and age-matched healthy controls (HCs). Compared with the HCs, the IGE group presented lower across-voxel CBF-DC correlations, higher CBF/DC ratio in the right posterior cingulate cortex/precuneus, middle frontal gyrus, and medial frontal gyrus (MFG), and lower ratio in the left inferior frontal gyrus. The increased CBF/DC ratio in the right MFG was correlated with lower performance intelligence quotient scores in the IGE group.

Conclusion

Children with IGE present altered neurovascular coupling, associated with lower performance intelligence quotient scores. The study shed a new insight into the pathophysiology of epilepsy and provided potential imaging biomarkers of cognitive performances in children with IGE.  相似文献   

11.

Aims

To compare the fecal levels of short-chain fatty acids (SCFAs) in patients with mild cognitive impairment (MCI) and normal controls (NCs) and to examine whether fecal SCFAs could be used as the biomarker for the identification of patients with MCI. To examine the relationship between fecal SCFAs and amyloid-β (Aβ) deposition in the brain.

Methods

A cohort of 32 MCI patients, 23 Parkinson's disease (PD) patients, and 27 NC were recruited in our study. Fecal levels of SCFAs were measured using chromatography and mass spectrometry. Disease duration, ApoE genotype, body mass index, constipation, and diabetes were evaluated. To assess cognitive impairment, we used the Mini-Mental Status Examination (MMSE). To assess brain atrophy, the degree of medial temporal atrophy (MTA score, Grade 0–4) was measured by structural MRI. Aβ positron emission tomography with 18F-florbetapir (FBP) was performed in seven MCI patients at the time of stool sampling and in 28 MCI patients at an average of 12.3 ± 0.4 months from the time of stool sampling to detect and quantify Aβ deposition in the brain.

Results

Compared with NC, MCI patients had significantly lower fecal levels of acetic acid, butyric acid, and caproic acid. Among fecal SCFAs, acetic acid performed the best in discriminating MCI from NC, achieved an AUC of 0.752 (p = 0.001, 95% CI: 0.628–0.876), specificity of 66.7%, and sensitivity of 75%. By combining fecal levels of acetic acid, butyric acid, and caproic acid, the diagnostic specificity was significantly improved, reaching 88.9%. To better verify the diagnostic performance of SCFAs, we randomly assigned 60% of participants into training dataset and 40% into testing dataset. Only acetic acid showed significantly difference between these two groups in the training dataset. Based on the fecal levels of acetic acid, we achieved the ROC curve. Next, the ROC curve was evaluated in the independent test data and 61.5% (8 in 13) of patients with MCI, and 72.7% (8 in 11) of NC could be identified correctly. Subgroup analysis showed that reduced fecal SCFAs in MCI group were negatively associated with Aβ deposition in cognition-related brain regions.

Conclusion

Reductions in fecal SCFAs were observed in patients with MCI compared with NC. Reduced fecal SCFAs were negatively associated with Aβ deposition in cognition-related brain regions in MCI group. Our findings suggest that gut metabolite SCFAs have the potential to serve as early diagnostic biomarkers for distinguishing patients with MCI from NC and could serve as potential targets for preventing AD.  相似文献   

12.

Background

Increased beta-secretase 1 (BACE1) activity has consistently been detected in brain tissue and cerebrospinal fluid of subjects with mild cognitive impairment (MCI) and probable Alzheimer’s disease (AD) compared with control subjects. The collection of cerebrospinal fluid by lumbar puncture is invasive. We sought to identify the presence of plasma BACE1 activity and determine potential alterations in subjects with MCI with clinical follow-up examinations for 3 years using patients with diagnosed probable AD dementia compared with healthy control subjects.

Methods

Seventy-five patients with probable AD, 96 individuals with MCI, and 53 age-matched and sex-matched healthy control subjects were recruited from three independent international academic memory clinics and AD research expert centers. Plasma BACE1 activity was measured by a synthetic fluorescence substrate enzyme-linked immunosorbent assay. BACE1 protein expression was assessed by Western blotting using three different antibodies that recognize the epitopes of the N-terminus, C-terminus, and full-length BACE1.

Results

Compared with healthy control subjects, plasma BACE1 activity (Vmax) significantly increased by 53.2% in subjects with MCI and by 68.9% in patients with probable AD. Subjects with MCI who converted to probable AD dementia at follow-up examinations exhibited significantly higher BACE1 activity compared with cognitively stable MCI nonconverters and showed higher levels of BACE1 activity than patients with AD.

Conclusions

Plasma BACE1 activity is significantly increased in MCI converters and patients with probable AD. The sensitivities and specificities of BACE1 activity for the patients were 84% and 88%, respectively. Our results indicate that plasma BACE1 activity may be a biomarker for AD risk and could predict progression from prodromal to probable AD dementia.  相似文献   

13.

Background

Episodic memory enables us to consciously recollect personally experienced past events. Memory performance is reduced in patients with mild cognitive impairment (MCI), an at‐risk condition for Alzheimer''s disease (AD).

Patients and methods

We used functional MRI (fMRI) to compare brain activity during memory encoding in 29 healthy elderly subjects (mean age 67.7 (SD 5.4) years) and 21 patients with MCI (mean age 69.7 (SD 7.0) years). Subjects remembered a list of words while fMRI data were acquired. Later, they had to recognise these words among a list of distractor words. The use of an event related paradigm made it possible to selectively analyse successfully encoded items in each individual. We compared activation for successfully encoded words between healthy elderly subjects and patients with MCI.

Results

The main intergroup difference was found in the left hippocampus and surrounding medial temporal lobe (MTL) regions for the patients with MCI compared with healthy subjects during successful encoding.

Conclusion

These results suggest that in patients with MCI, an increase in MTL activation is necessary for successful memory encoding. Hippocampal activation may help to link newly learned information to items already stored in memory. Increased activation in MTL regions in MCI may reflect a compensatory response to the beginning of AD pathology.Episodic memory, which enables humans to consciously recollect personally experienced past events, is based on at least two fundamental mnemonic operations: memory formation and retrieval. Event related functional MRI (fMRI) provides a unique opportunity to study the neural correlates of these processes and their subcomponents, such as successful and failed encoding.1Studies in young healthy subjects have shown that successful declarative memory formation, measured as the difference in brain activity during encoding between subsequently remembered and forgotten items, is accompanied by increases in activity in medial temporal and inferior prefrontal areas.2,3,4,5,6,7,8,9,10 Structures within the medial temporal lobe (MTL) region, especially hippocampal formation,7,11 are believed to be essential in establishing new memories.Patients with mild cognitive impairment (MCI)12 are characterised by significant memory impairment, which is not severe enough to interfere with usual activities of daily living.13 The majority of patients with MCI go on to develop Alzheimer''s disease (AD).Patients with AD, in comparison with older controls, show consistently decreased MTL activation during encoding of new materials.14,15,16,17 Fewer fMRI studies have investigated MTL encoding activation in patients with MCI,15,16,18 showing inconsistent results. A recent fMRI study showed decreased MTL activation during a memory encoding task.15 However, another study16 found that only a subgroup of subjects with “isolated memory decline” demonstrated decreased hippocampal activation during encoding, whereas still another study19 reported increased MTL activation in cognitively intact individuals genetically at risk for AD. The variability in these fMRI results may be because the groups differed in the degree of impairment and underlying neural pathology.The degree of activation detected by fMRI within MTL regions during encoding strongly correlates with subjects'' subsequent ability to remember the items encoded.2,8 Decreased MTL activation in patients with MCI and AD has been associated with relatively poor performance on post scan memory testing.14,15,17 In contrast, subjects who were genetically at risk for AD, but could successfully perform the fMRI encoding task, showed increased MTL activation. It has been hypothesised that increased MTL activation during successful encoding may represent a compensatory response that allows for relatively normal memory function in the face of developing pathological change19 There is first evidence that elderly subjects with MCI and with a relatively preserved performance in the fMRI memory task show such a compensatory increased hippocampal response in comparison with healthy subjects, while patients with AD who exhibited poorer performance in the task had lower hippocampal activation.20To further examine this question, it is not sufficient to compare general encoding related activation between patients with MCI and healthy subjects as this comparison would be confounded by task performance. Therefore, we used an event related fMRI paradigm, where subjects are instructed to remember visually presented words. According to task performance in subsequent recognition memory tests, all learned items can then be separated into those that are later remembered (subsequent hits) and those that are later forgotten (subsequent misses), individually for each subject. By comparing brain activation between healthy subjects and patients with MCI only for subsequent hits, brain regions can be identified that differ between groups during successful encoding into episodic memory. It has been shown previously that the degree of neural activity increases with the demands of the cognitive task and that the magnitude and spatial extent of brain activation increases with cognitive effort.21,22,23 We hypothesise that successful memory encoding, which should be more demanding for patients with MCI than for healthy elderly subjects, would result in increased MTL activation in patients with MCI.  相似文献   

14.
Functional MRI (fMRI) studies of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have begun to reveal abnormalities in memory circuit function in humans suffering from memory disorders. Since the medial temporal lobe (MTL) memory system is a site of very early pathology in AD, a number of studies, reviewed here, have focused on this region of the brain. By the time individuals are diagnosed clinically with AD dementia, the substantial memory impairments appear to be associated with not only MTL atrophy but also hypoactivation during memory task performance. Prior to dementia, when individuals are beginning to manifest signs and symptoms of memory impairment, the hippocampal formation and other components of the MTL memory system exhibit substantial functional abnormalities during memory task performance. It appears that, early in the course of MCI when memory deficits and hippocampal atrophy are less prominent, there may be hyperactivation of MTL circuits, possibly representing inefficient compensatory activity. Later in the course of MCI, when considerable memory deficits are present, MTL regions are no longer able to activate during attempted learning, as is the case in AD dementia. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, such as for use in clinical trials.  相似文献   

15.

Objectives

Mild cognitive impairment (MCI) may represent a transition to early Alzheimer's disease (AD). The retinal nerve fiber layer (RNFL) is composed of axons originating in retinal ganglion cells that eventually form the optic nerves. Previous studies have shown that degenerative changes occur in optic nerve fibers and manifested as thinning of RNFL in patients with AD. The objective of this study was to assess the relationship between MCI, AD and loss of RNFL.

Patients and methods

In this study, patients fulfilling diagnostic criteria for MCI (n = 24), AD (n = 30) and cognitively normal age-matched controls (n = 24) have undergone neuro-ophthalmologic and optical coherence tomography (OCT) examinations to measure RNFL thickness.

Results

There was a significant decrease in RNFL thickness in both study groups (AD and MCI) compared to the control group, particularly in the inferior quadrants of the optic nerve head, while the superior quadrants were significantly thinner only in AD. Although AD patients may have more severe changes than MCI cases, the differences were statistically nonsignificant. Furthermore among AD patients, there was no relation to the severity of the dementia.

Conclusions

Our data confirm the retinal involvement in AD, as reflected by loss of axons in the optic nerves.  相似文献   

16.

Introduction

We examined the association between decreased cerebral blood flow (CBF) and cognitive impairment in Alzheimer's disease (AD), mild cognitive impairment (MCI), and subjective cognitive decline (SCD).

Methods

We included 161 AD, 95 MCI, and 143 SCD patients from the Amsterdam Dementia Cohort. We used 3-T pseudo-continuous arterial spin labeling to estimate whole-brain and regional partial volume–corrected CBF. Neuropsychological tests covered global cognition and five cognitive domains. Associations were investigated using linear regression analyses.

Results

In the whole sample, reduced overall and regional CBF was associated with impairment in all cognitive domains. We found significant interactions between diagnosis and CBF for language and between diagnosis and parietal CBF for global cognition and executive functioning. Stratification showed that decreased CBF was associated with worse performance in AD patients but not in MCI or SCD.

Discussion

Our results suggest that CBF may have potential as a functional marker of disease severity.  相似文献   

17.
BACKGROUND: Alzheimer disease (AD) is the most common form of dementia worldwide. Mild cognitive impairment (MCI) is the recent terminology for patients with cognitive deficiencies in the absence of functional decline. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to dementia at a rate of 10% to 15% per year. Patients with AD and MCI experience progressive brain atrophy. OBJECTIVE: To analyze the structural magnetic resonance imaging data for 24 patients with amnestic MCI and 25 patients with mild AD using an advanced 3-dimensional cortical mapping technique. DESIGN: Cross-sectional cohort design. Patients/ METHODS: We analyzed the structural magnetic resonance imaging data of 24 amnestic MCI (mean MMSE, 28.1; SD, 1.7) and 25 mild AD patients (all MMSE scores, >18; mean MMSE, 23.7; SD, 2.9) using an advanced 3-dimensional cortical mapping technique. RESULTS: We observed significantly greater cortical atrophy in patients with mild AD. The entorhinal cortex, right more than left lateral temporal cortex, right parietal cortex, and bilateral precuneus showed 15% more atrophy and the remainder of the cortex primarily exhibited 10% to 15% more atrophy in patients with mild AD than in patients with amnestic MCI. CONCLUSION: There are striking cortical differences between mild AD and the immediately preceding cognitive state of amnestic MCI. Cortical areas affected earlier in the disease process are more severely affected than those that are affected late. Our method may prove to be a reliable in vivo disease-tracking technique that can also be used for evaluating disease-modifying therapies in the future.  相似文献   

18.

Introduction

Cognitive reserve (CR) reflects the capacity of the brain to endure neuropathology in order to minimize clinical manifestations. Previous studies showed that CR modulates the patterns of brain activity in both healthy and clinical populations. In the present study we sought to determine whether reorganizations of functional brain resources linked to CR could already be observed in amnestic mild cognitive impairment (a-MCI) and mild Alzheimer's disease (AD) patients when performing a task corresponding to an unaffected cognitive domain. We further investigated if activity in regions showing task-induced deactivations, usually identified as pertaining to the default-mode network (DMN), was also influenced by CR.

Methods

Fifteen healthy elders, 15 a-MCI and 15 AD patients underwent functional magnetic resonance imaging (fMRI) during a speech comprehension task. Differences in the regression of slopes between CR proxies and blood-oxygen-level dependent (BOLD) signals across clinical groups were investigated for activation and deactivation areas. Correlations between significant fMRI results and a language comprehension test were also computed.

Results

Among a-MCI and AD we observed positive correlations between CR measures and BOLD signals in task-induced activation areas directly processing speech, as well as greater deactivations in regions of the DMN. These relationships were inverted in healthy elders. We found no evidence that these results were mediated by gray matter volumes. Increased activity in left frontal areas and decreased activity in the anterior cingulate were related to better language comprehension in clinical evaluations.

Conclusions

The present findings provide evidence that the neurofunctional reorganizations related to CR among a-MCI and AD patients can be seen even when considering a preserved cognitive domain, being independent of gray matter atrophy. Areas showing both task-induced activations and deactivations are modulated by CR in an opposite manner when considering healthy elders versus patients. Brain reorganizations facilitated by CR may reflect behavioral compensatory mechanisms.  相似文献   

19.

Background and purpose

Blood-based biomarkers are promising tools for the diagnosis of Alzheimer disease (AD) at prodromal stages (mild cognitive impairment [MCI]) and are hoped to be implemented as screening tools for patients with cognitive complaints. In this work, we evaluated the potential of peripheral neurological biomarkers to predict progression to AD dementia and the relation between blood and cerebrospinal fluid (CSF) AD markers in MCI patients referred from a general neurological department.

Methods

A group of 106 MCI patients followed at the Neurology Department of Coimbra University Hospital was included. Data regarding baseline neuropsychological evaluation, CSF levels of amyloid β 42 (Aβ42), Aβ40, total tau (t-Tau), and phosphorylated tau 181 (p-Tau181) were available for all the patients. Aβ42, Aβ40, t-Tau, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) levels were determined in baseline stored serum and plasma samples by commercial SiMoA (Single Molecule Array) assays. Progression from MCI to AD dementia was assessed at follow-up (mean = 5.8 ± 3.4 years).

Results

At baseline, blood markers NfL, GFAP, and p-Tau181 were significantly increased in patients who progressed to AD at follow-up (p < 0.001). In contrast, plasma Aβ42/40 ratio and t-Tau showed no significant differences between groups. NfL, GFAP, and p-Tau181 demonstrated good diagnostic accuracy to identify progression to AD dementia (area under the curve [AUC] = 0.81, 0.80, and 0.76, respectively), which improved when combined (AUC = 0.89). GFAP and p-Tau181 were correlated with CSF Aβ42. Association of p-Tau181 with NfL was mediated by GFAP, with a significant indirect association of 88% of the total effect.

Conclusions

Our findings highlight the potential of combining blood-based GFAP, NfL, and p-Tau181 to be applied as a prognostic tool in MCI.  相似文献   

20.
Alzheimer's disease (AD) is associated with disruptions in brain activity and networks. However, there is substantial inconsistency among studies that have investigated functional brain alterations in AD; such contradictions have hindered efforts to elucidate the core disease mechanisms. In this study, we aim to comprehensively characterize AD‐associated functional brain alterations using one of the world's largest resting‐state functional MRI (fMRI) biobank for the disorder. The biobank includes fMRI data from six neuroimaging centers, with a total of 252 AD patients, 221 mild cognitive impairment (MCI) patients and 215 healthy comparison individuals. Meta‐analytic techniques were used to unveil reliable differences in brain function among the three groups. Relative to the healthy comparison group, AD was associated with significantly reduced functional connectivity and local activity in the default‐mode network, basal ganglia and cingulate gyrus, along with increased connectivity or local activity in the prefrontal lobe and hippocampus (p < .05, Bonferroni corrected). Moreover, these functional alterations were significantly correlated with the degree of cognitive impairment (AD and MCI groups) and amyloid‐β burden. Machine learning models were trained to recognize key fMRI features to predict individual diagnostic status and clinical score. Leave‐one‐site‐out cross‐validation established that diagnostic status (mean area under the receiver operating characteristic curve: 0.85) and clinical score (mean correlation coefficient between predicted and actual Mini‐Mental State Examination scores: 0.56, p < .0001) could be predicted with high accuracy. Collectively, our findings highlight the potential for a reproducible and generalizable functional brain imaging biomarker to aid the early diagnosis of AD and track its progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号