首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
A myelin-associated neurite outgrowth inhibitor, Nogo-A, plays a key role in inhibition of axonal regeneration following injury and ischemia in the central nervous system (CNS). Because axonal injury is a pathologic hallmark of multiple sclerosis (MS), we have investigated the expression of Nogo-A and its receptor NgR in four MS and 12 non-MS control brains by immunohistochemistry. Nogo-A expression was markedly upregulated in surviving oligodendrocytes at the edge of chronic active demyelinating lesions of MS and ischemic lesions of acute and old cerebral infarction, whereas NgR expression was greatly enhanced in reactive astrocytes and microglia/macrophages in these lesions when compared with their expression in the brains of neurologically normal controls. Nogo-A and NgR were also identified in a subpopulation of neurons. In contrast, Nogo-A was undetectable in reactive astrocytes and microglia/macrophages and NgR was not expressed on oligodendrocytes in any cases examined. Western blot analysis and double labeling immunocytochemistry identified the constitutive expression of NgR in cultured human astrocytes. These results suggest that Nogo-A expressed on oligodendrocytes might interact with NgR presented by reactive astrocytes and microglia/macrophages in active demyelinating lesions of MS, although biologic effects caused by Nogo-A/NgR interaction among glial cells remain unknown.  相似文献   

2.
The reticulon protein Nogo-A is an important regulator of neurite growth, axonal plasticity, and cell migration in the central nervous system. Previous studies have shown markedly elevated levels of Nogo-A in human temporal lobe epilepsy. In the present study, we examined the expression pattern of the Nogo-A system in cortical lesions of pediatric patients with tuberous sclerosis complex and focal cortical dysplasia type IIb. These disorders are characterized by malformations of cortical development and are frequently associated with intractable epilepsy. We found that the messenger RNA and protein levels of the Nogo-A receptor (NgR) and the downstream targets of Nogo-A, LINGO-1, TROY, and RhoA but not P75 were upregulated in the cortices of patients compared with autopsy control samples. Immunohistochemical analyses indicated that Nogo-A and NgR were strongly expressed in misshapen cells, particularly dysmorphic neurons, balloon cells, and giant cells. TROY was diffusely expressed in the malformations of cortical development. Most of theNogo-A/NgR-positive misshapen cells were colabeled with neuronal rather than astrocytic markers. Taken together, our results suggestthat the activation of Nogo-A via the NgR/LINGO-1/TROY signal transduction pathways, but not NgR/LINGO-1/P75, may be involved in the development and/or seizure activity of cortical lesions in tuberous sclerosis complex and focal cortical dysplasia type IIb.  相似文献   

3.
4.
Nogo receptors (NgR1, -2, and -3) and their ligands, i.e., myelin-derived neurite outgrowth inhibitor (Nogo)-A, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp), have been considered to play pivotal roles in controlling axonal regeneration and neuronal plasticity. We show here that NgR1-3 mRNAs were differentially expressed exclusively in neurons situated in the telencephalon, diencephalons, and cerebellum, whereas we could not detect any NgR1-3 mRNA expression in the mesencephalon, pons, medulla oblongata, and spinal cord. On the other hand, Nogo-A mRNA was abundantly expressed in both neurons and oligodendrocytes throughout the central nervous system (CNS). MAG and OMgp mRNAs were also abundantly expressed in oligodendrocytes throughout the CNS. Interestingly, we did not detect NgR1-3 mRNAs in monoaminergic neurons in the substantia nigra, ventral tegmental area, locus caeruleus, and raphe nuclei, which are known to have high regenerative capacity. In addition, although neurons in the reticular thalamus and cerebellar nuclei are also known to show high capacity for regeneration, NgR1-3 mRNAs were not detected there. These data indicate that NgR1-3, Nogo-A, MAG, and OMgp mRNAs are differentially expressed in the rat CNS and suggest that the level of NgR1-3 expression in a neuron might determine its regenerative capacity.  相似文献   

5.
LINGO-1 is a CNS-specific protein and a functional component of the NgR1/p75/LINGO-1 and NgR1/TAJ(TROY)/LINGO-1 signaling complexes that mediate inhibition of axonal outgrowth. These receptor complexes mediate the axonal growth inhibitory effects of Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp) via RhoA activation. Soluble LINGO-1 (LINGO-1-Fc), which acts as an antagonist of these pathways by blocking LINGO-1 binding to NgR1, was administered to rats after dorsal or lateral hemisection of the spinal cord. LINGO-1-Fc treatment significantly improved functional recovery, promoted axonal sprouting and decreased RhoA activation and increased oligodendrocyte and neuronal survival after either rubrospinal or corticospinal tract transection. These experiments demonstrate an important role for LINGO-1 in modulating axonal outgrowth in vivo and that treatment with LINGO-1-Fc can significantly enhance recovery after spinal cord injury.  相似文献   

6.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system which leads to destruction of myelin sheaths. The patterns of cell proliferation in the early course of the disease are largely unknown. The present study used immunohistochemical identification of proliferating glial cells in stereotactic brain biopsy material of eight patients with early chronic MS. Double-labelling with the proliferation marker MIB-1 detected proliferating oligodendrocytes (MOG), astrocytes (GFAP) and microglia/macrophages (Ki-M1P). The majority of proliferating cells were macrophages/microglia when compared with oligodendrocytes ( P >0.005) or astrocytes ( P >0.0005); only a minor proportion of microglia/macrophages, however, proliferated in situ . Astrocytic and oligodendroglial proliferation was sparse to absent and showed significant variations between different patients. There were statistically significant differences when comparing the amount of proliferation between lesions of different demyelinating activity: highest numbers of proliferating cells were found in early active lesions compared with demyelinated and early remyelinated lesions ( P >0.05) or the periplaque white matter ( P >0.01). MOG-positive oligodendrocytes proliferated occasionally in the early stages of lesion formation; this proliferation occurred in four cases but was independent of the stage of the disease. Since MOG is expressed by mature oligodendrocytes, and not by immature precursors, this might suggest a potential role for the proliferation of mature surviving oligodendrocytes with subsequent remyelination.  相似文献   

7.
The unambiguous identification of oligodendrocytes in tissue sections, especially in myelinated tracts, is often difficult. Most of the antibodies used to identify oligodendrocytes label the myelin sheath as well. Originally described as an inhibitor of axonal outgrowth, Nogo-A is known to be strongly expressed in mature oligodendrocytes in vivo. In the present investigation we analyzed the expression patterns of Nogo-A in adult mouse and human CNS as well as in demyelinating animal models and multiple sclerosis lesions. Nogo-A expression was compared with that of other frequently used oligodendroglial markers such as CC1, CNP, and in situ hybridization for proteolipid protein mRNA. Nogo-A strongly and reliably labeled oligodendrocytes in the adult CNS as well as in demyelinating lesions and thus represents a valuable tool for the identification of oligodendrocytes in human and mouse CNS tissue.  相似文献   

8.
Nogo-A has been considered as one of the most important myelin-associated axonal regeneration inhibitors in the central nervous system. Recent studies have demonstrated various additional physiological roles of Nogo family members. To understand the possible effect of Nogo-A on the differentiation of oligodendrocytes, antibodies against distinct extracellular domains of Nogo-A were applied in cell cultures. Oligodendrocyte precursor cells from P2 rat cortex were grown in the presence of monoclonal antibody against the N-terminal inhibitory domain of Nogo-A or the C-terminal 66 amino acid loop of Nogo-A for 3 days, and the antibody treatment resulted in stunted process extension and inhibited differentiation of oligodendrocytes. Concomitant with morphology changes, Rho GTPases activity was greatly increased upon the antibody treatment and the expression level of LINGO-1, which was recently shown to be a negative regulator for the oligodendrocyte maturation, was upregulated in the process of antibody treatment. These results indicate that endogenous Nogo-A expressed in oligodendrocyte may act though Rho GTPase and LINGO-1 to influence the morphological differentiation of oligodendrocytes and will help us to understand the physiology role of Nogo-A in oligodendrocyte biology.  相似文献   

9.
Although CNS neurons have the potential to regenerate their axons after injury, myelin debris carrying axon growth inhibitors rapidly induce growth cone collapse. Receptors (NgR1, NgR2) and coreceptors (LINGO-1, p75(NTR), TROY) for these inhibitors have been characterized and transduction pathways partially identified. However, little is known about the expression of these receptors in intact and lesioned supraspinal projection neurons. Using in situ hybridization, immunohistochemistry and neuronal tract-tracing, we found that NgR1, NgR2 and LINGO-1 are strongly expressed in several neuronal populations of the adult mouse brain projecting to the spinal cord, including neurons projecting through the corticospinal, rubrospinal, caerulospinal, reticulospinal, raphespinal and vestibulospinal tracts. As expected, p75(NTR) expression was restricted to neuronal descending pathways from the brainstem. TROY was absent from most brain regions and from all neuronal projection systems, suggesting that additional signal-transducing coreceptors exist. Qualitative and quantitative analyses revealed that brain expression for these receptors was not affected by a severe T10 spinal cord contusion.  相似文献   

10.
The regenerative capacity of the adult mammalian central nervous system is restricted by the myelinating oligodendrocytes that form a nonpermissive environment for axonal growth. Currently only the Nogo receptor (NgR), in complex with p75(NTR) neurotrophin receptor is known to be involved in this inhibitory signalling in neurons. NgR is a common receptor for the three inhibitory myelin proteins Nogo-A, OMgp, and MAG. Here we describe two novel Nogo receptor gene homologs named NGRL2 and NGRL3 from human and mouse that, like NGR, encode putative leucine-rich repeat containing GPI-anchored proteins. We show by in situ hybridisation and by RT-PCR that NGRL mRNAs are predominantly expressed in the neurons of the embryonic and adult central and peripheral nervous systems, and that they together with NGR possess distinct and partially nonoverlapping expression patterns. We also show that all four members of the reticulon family, including Nogo-A, are widely expressed in the nervous system, and therefore are possible ligands for the NgRLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号