首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The use of movie-watching as an acquisition state for functional connectivity (FC) MRI has recently enabled multiple groups to obtain rich data sets in younger children with both substantial sample sizes and scan durations. Using naturalistic paradigms such as movies has also provided analytic flexibility for these developmental studies that extends beyond conventional resting state approaches. This review highlights the advantages and challenges of using movies for developmental neuroimaging and explores some of the methodological issues involved in designing pediatric studies with movies. Emerging themes from movie-watching studies are discussed, including an emphasis on intersubject correlations, developmental changes in network interactions under complex naturalistic conditions, and dynamic age-related changes in both sensory and higher-order network FC even in narrow age ranges. Converging evidence suggests an enhanced ability to identify brain-behavior correlations in children when using movie-watching data relative to both resting state and conventional tasks. Future directions and cautionary notes highlight the potential and the limitations of using movies to study FC in pediatric populations.  相似文献   

3.
ObjectiveThe objective of this study was to elucidate alteration in functional connectivity (FC) in patients with benign epilepsy with centrotemporal spikes (BECTS) as induced by physical exercise therapy and their correlation to the neuropsychological (NP) functions.MethodsWe analyzed 115 artifact- and spike-free 2-second epochs extracted from resting state EEG recordings before and after 5 weeks of physical exercise in eight patients with BECTS. The exact Low Resolution Electromagnetic Tomography (eLORETA) was used for source reconstruction. We evaluated the cortical current source density (CSD) power across five different frequency bands (delta, theta, alpha, beta, and gamma). Altered FC between 34 regions of interests (ROIs) was then examined using lagged phase synchronization (LPS) method. We further investigated the correlation between the altered FC measures and the changes in NP test scores.ResultsWe observed changes in CSD power following the exercise for all frequency bands and statistically significant increases in the right temporal region for the alpha band. There were a number of altered FC between the cortical ROIs in all frequency bands of interest. Furthermore, significant correlations were observed between FC measures and NP test scores at theta and alpha bands.ConclusionThe increased localization power at alpha band may be an indication of the positive impact of exercise in patients with BECTS. Frequency band-specific alterations in FC among cortical regions were associated with the modulation of cognitive and NP functions. The significant correlation between FC and NP tests suggests that physical exercise may mitigate the severity of BECTS, thereby enhancing NP function.  相似文献   

4.
Previous simulation studies have stressed the importance of the multimodal integration of electroencephalography (EEG) and magnetoencephalography (MEG) data in the estimation of cortical current density. In such studies, no systematic variations of the signal-to-noise ratio (SNR) and of the number of sensors were explicitly taken into account in the estimation process. We investigated effects of variable SNR and number of sensors on the accuracy of current density estimate by using multimodal EEG and MEG data. This was done by using as the dependent variable both the correlation coefficient (CC) and the relative error (RE) between imposed and estimated waveforms at the level of cortical region of interests (ROI). A realistic head and cortical surface model was used. Factors used in the simulations were: (1). the SNR of the simulated scalp data (with seven levels: infinite, 30, 20, 10, 5, 3, 1); (2). the particular inverse operator used to estimate the cortical source activity from the simulated scalp data (INVERSE, with two levels, including minimum norm and weighted minimum norm); and (3). the number of EEG or MEG sensors employed in the analysis (SENSORS, with three levels: 128, 61, 29 for EEG and 153, 61, or 38 in MEG). Analysis of variance demonstrated that all the considered factors significantly affect the CC and the RE indexes. Combined EEG-MEG data produced statistically significant lower RE and higher CC in source current density reconstructions compared to that estimated by the EEG and MEG data considered separately. These observations hold for the range of SNR values presented by the analyzed data. The superiority of current density estimation by multimodal integration of EEG and MEG was not due to differences in number of sensors between unimodal (EEG, MEG) and combined (EEG-MEG) inverse estimates. In fact, the current density estimate relative to the EEG-MEG multimodal integration involved 61 EEG plus 63 MEG sensors, whereas estimations carried out with the single modalities alone involved 128 sensors for EEG and 153 sensors for MEG. The results of the simulations also suggest that the use of simultaneous 29 EEG sensors during the MEG measurements carried out with full sensor arrangements (153 sensors) returned an accuracy of the cortical source estimate statistically similar to that obtained by combining 64 EEG and 153 MEG sensors.  相似文献   

5.
With the rapid developments in image processing, new clinical applications of manipulation and three-dimensional (3-D) reconstruction of neuro-imaging are evolving. Combination with other non-invasive techniques aimed at localising electric sources in the brain is of particular interest. These techniques rely on the recording of brain electrical activity and/or the associated magnetic fields from multiple areas on the scalp. Data obtained from an electroencephalogram (EEG) or from magnetoencephalography (MEG) can be fused in 3-D arrangement with anatomical [magnetic resonance imaging/computerised tomography (MRI/CT)] and/or metabolic [positron emission tomography (PET)] data. Such techniques highlight information on the functional correlates of anatomical or space-occupying lesions and their role in the localisation of related symptomatic epilepsy. In the present study we report on methodological issues and preliminary clinical data on spectral EEG/MRI co-registration procedures, offering two examples of children presenting with hemispheric lesions, one frontal tumour and one temporal arterio-venous malformation. The EEG was acquired from 32/64 electrode location. The electrode position and that of four reference points were measured with a dual sensor Polhemus 3D Isotrak digitiser. Sources of EEG activity were determined in 3-D space with the inverse solution method low resolution electromagnetic tomography (LORETA), providing for each frequency component, the topographic distribution of active electrical sources. The positions of the reference points were also measured on MRI, and co-registration of EEG and MRI was achieved using a transformation algorithm. The reconstructed 3-D images of co-registered EEG/MRI clearly demonstrate the relationship between the space-occupying lesion and the epileptic activity. Preliminary results show that in all the patients it was possible to identify with a remarkable accuracy the 3-D topographic relationship between lesion and cortical areas showing localised abnormalities on the EEG. The present method could further enhance the understanding of the effect of resective treatment of structural lesions on brain functioning. The new combined images can be used in combination with image-guided surgery equipment to modify effective surgical resection. Received: 21 March 2000  相似文献   

6.
The brain exhibits temporally coherent networks (TCNs) involving numerous cortical and sub‐cortical regions both during the rest state and during the performance of cognitive tasks. TCNs represent the interactions between different brain areas, and understanding such networks may facilitate electroencephalography (EEG) source estimation. We propose a new method for examining TCNs using scalp EEG in conjunction with data obtained by functional magnetic resonance imaging (fMRI). In this approach, termed NEtwork based SOurce Imaging (NESOI), multiple TCNs derived from fMRI with independent component analysis (ICA) are used as the covariance priors of the EEG source reconstruction using Parametric Empirical Bayesian (PEB). In contrast to previous applications of PEB in EEG source imaging with smoothness or sparseness priors, TCNs play a fundamental role among the priors used by NESOI. NESOI achieves an efficient integration of the high temporal resolution EEG and TCN derived from the high spatial resolution fMRI. Using synthetic and real data, we directly compared the performance of NESOI with other distributed source inversion methods, with and without the use of fMRI priors. Our results indicated that NESOI is a potentially useful approach for EEG source imaging. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a powerful tool for studying cortical excitability and connectivity. To enhance the EEG interpretation, independent component analysis (ICA) has been used to separate the data into independent components (ICs). However, TMS can evoke large artifacts in EEG, which may greatly distort the ICA separation. The removal of such artifactual EEG from the data is a difficult task. In this paper we study how badly the large artifacts distort the ICA separation, and whether the distortions could be avoided without removing the artifacts. We first show that, in the ICA separation, the time courses of the ICs are not affected by the large artifacts, but their topographies could be greatly distorted. Next, we show how this distortion can be circumvented. We introduce a novel technique of suppression, by which the EEG data are modified so that the ICA separation of the suppressed data becomes reliable. The suppression, instead of removing the artifactual EEG, rescales all the data to about the same magnitude as the neural EEG. For the suppressed data, ICA returns the original time courses, but instead of the original topographies, it returns modified ones, which can be used, e.g., for the source localization. We present three suppression methods based on principal component analysis, wavelet analysis, and whitening of the data matrix, respectively. We test the methods with numerical simulations. The results show that the suppression improves the source localization.  相似文献   

8.
Adolescence to early adulthood is a period of dramatic transformation in the healthy human brain. However, the relationship between the concurrent structural and functional changes remains unclear. We investigated the impact of age on both neuroanatomy and neurophysiology in the same healthy subjects (n = 138) aged 10 to 30 years using magnetic resonance imaging (MRI) and resting electroencephalography (EEG) recordings. MRI data were segmented into gray and white matter images and parcellated into large-scale regions of interest. Absolute EEG power was quantified for each lobe for the slow-wave, alpha and beta frequency bands. Gray matter volume was found to decrease across the age bracket in the frontal and parietal cortices, with the greatest change occurring in adolescence. EEG activity, particularly in the slow-wave band, showed a similar curvilinear decline to gray matter volume in corresponding cortical regions. An inverse pattern of curvilinearly increasing white matter volume was observed in the parietal lobe. We suggest that the reduction in gray matter primarily reflects a reduction of neuropil, and that the corresponding elimination of active synapses is responsible for the observed reduction in EEG power.  相似文献   

9.
In patients with a right-sided deep-seated lesion, a causal relationship between a cortical dysfunction in the right temporo-parietal region and the occurrence of neglect has been suggested.

In the present study we tried to correlate clinical and quantitative EEG data from a sample of 33 right stroke patients divided into two subgroups according to the presence or absence of neglect. A 20-channel EEG cartography system was used for EEG mapping. Delta and theta activities were calculated in sixteen regions of interest. The analysis of raw values stressed the importance of the right parieto-temporal cortex to discriminate between the two subgroups of patients. These results suggest that in patients with right subcortical damage, a remote cortical parieto-temporal dysfunction within an intra-hemispheric network is necessary to provoke neglect.  相似文献   


10.
EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the generating source of electrical potentials recorded on the scalp. Recent advances in computer technologies have made the analysis of ESI data less time-consuming, and have rekindled interest in this technique as a clinical diagnostic tool. On the basis of the available body of evidence, ESI seems to be a promising tool for epilepsy evaluation; however, the precise clinical value of ESI in presurgical evaluation of epilepsy and in localization of eloquent cortex remains to be investigated. In this Review, we describe two fundamental issues in ESI; namely, the forward and inverse problems, and their solutions. The clinical application of ESI in surgical planning for patients with medically refractory focal epilepsy, and its use in source reconstruction together with invasive recordings, is also discussed. As ESI can be used to map evoked responses, we discuss the clinical utility of this technique in cortical mapping-an essential process when planning resective surgery for brain regions that are in close proximity to eloquent cortex.  相似文献   

11.
PURPOSE: Simultaneous interictal EEG and magnetoencephalography (MEG) recordings were used for noninvasive analysis of epileptogenicity in focal cortical dysplasia (FCD). The results of two different approach methods (multiple source analysis of averaged spikes and single dipole peak localization of single spikes) were compared with pre- and postoperative anatomic magnetic resonance imaging (MRI). PATIENTS: We studied nine children and adolescents (age, 3.5-15.9 years) with localization-related epilepsy and FCD diagnosis based on MRI. Five patients underwent epilepsy surgery, two of them after long-term recording with subdural grid electrodes, and one after intraoperative electrocorticography. METHODS: The 122-channel whole-head MEGs and 33-channel EEGs were recorded simultaneously for 25 to 40 min. Interictal spikes were identified visually and used as templates to search for similar spatiotemporal spike patterns throughout the recording. With the BESA program, similar spikes (r > 0.85) were detected, averaged, high-pass filtered (5 Hz) to enhance spike onset, and subjected to multiple spatiotemporal source analysis with a multishell spherical head model. Peak activity from single spikes was modeled by single dipoles for the same subset of spikes. Source localization was visualized by superposition on T1-weighted MRI and compared with the lesion identified in T1- and T2-weighted MRI. In the five cases undergoing epilepsy surgery, the results were correlated with invasive recordings, postoperative MRI, and outcome. RESULTS: In all cases, the analysis of averaged spikes showed a localization of onset- and peak-related sources within the visible lesion for both EEG and MEG. Of the single spikes, 128 (45%; total 284) were localizable at the peak in MEG, and 170 (60%) in EEG. Of these, 91% localized within the lesion with MEG, and 93.5% with EEG. In three of five patients operated on, the resected area included the onset zones of averaged EEG and MEG spike activity. These patients had excellent postoperative outcome, whereas the others did not become seizure free. CONCLUSIONS: Consistent MEG and EEG spike localization in the lesional zone confirmed the hypothesis of intrinsic epileptogenicity in FCD.  相似文献   

12.
Even though it is known that neonatal seizures are associated with acute brain lesions, the relationship of electroencephalographic (EEG) seizures to acute perinatal brain lesions visible on magnetic resonance imaging (MRI) has not been objectively studied. EEG source localization is successfully used for this purpose in adults, but it has not been sufficiently explored in neonates. Therefore, we developed an integrated method for ictal EEG dipole source localization based on a realistic head model to investigate the utility of EEG source imaging in neonates with postasphyxial seizures. We describe here our method and compare the dipole seizure localization results with acute perinatal lesions seen on brain MRI in 10 full‐term infants with neonatal encephalopathy. Through experimental studies, we also explore the sensitivity of our method to the electrode positioning errors and the variations in neonatal skull geometry and conductivity. The localization results of 45 focal seizures from 10 neonates are compared with the visual analysis of EEG and MRI data, scored by expert physicians. In 9 of 10 neonates, dipole locations showed good relationship with MRI lesions and clinical data. Our experimental results also suggest that the variations in the used values for skull conductivity or thickness have little effect on the dipole localization, whereas inaccurate electrode positioning can reduce the accuracy of source estimates. The performance of our fused method indicates that ictal EEG source imaging is feasible in neonates and with further validation studies, this technique can become a useful diagnostic tool. Hum Brain Mapp 34:2402–2417, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Seed‐based functional connectivity (FC) of resting‐state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal‐to‐noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal (“intensity‐based masking”) by fitting a Gaussian‐based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real‐world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter‐subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity‐based masking method as a common practice in the pre‐processing of seed‐based functional connectivity analysis, and provide software tools for the computation of intensity‐based masks on fMRI data. Hum Brain Mapp 37:2407–2418, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

14.
Cortical myoclonus in children   总被引:2,自引:0,他引:2  
Cortical myoclonus is a distinct clinical condition that can be defined electrophysiologically, and occurs in both children and adults. It is well known that patients sometimes exhibit stimulus-sensitive jerks and giant somatosensory-evoked potentials (SEPs). In contrast, imaging abnormalities are less prominent in many patients. Reports focusing on cortical myoclonus, except for epilepsia partialis continua, in childhood have been limited in Japan. One reason for this could be that Japanese pediatric neurologists are not familiar with the backaveraging technique. We describe the clinical and physiological features of cortical myoclonus in ten children. Routine EEG, EEG backaveraging, SEP measurement, CT/MRI (computed tomography/magnetic resonance imaging), and TMS (transcranial magnetic stimulation) were performed. All patients exhibited clear evidence of cortical myoclonus. In six patients, backaveraging was necessary since spikes were absent on routine EEG. A cortical source of the myoclonus was further supported by a TMS study performed on four patients. The etiologies of the myoclonus were diverse, cerebrovascular disease being the most common (three patients). Stimulus-sensitive or action-induced jerks were observed in three patients. Cortical SEPs were enlarged in one patient, and reduced or absent in six. Lesions were found on CT/MRI in nine patients, in five of whom the margin of the lesion was within, or adjacent to, the sensorimotor cortex. Complete destruction of the sensorimotor cortex was not observed. It was suggested that cortical neurons in the vicinity of a lesion, rather than in the lesion itself, play a role in the generation of focal myoclonus.  相似文献   

15.
Magnetoencephalography (MEG) is used twofold for presurgical evaluation of patients with medically intractable partial epilepsy; to identify epileptogenic focus and to investigate functions of cortical areas at or near the epileptogenic focus or structural lesion. For the precise localization of the current source of epileptic discharge, the question as to whether MEG is superior to electroencephalography (EEG) is often addressed. To answer this question, so many factors, both biologically and technically related, have to be taken into consideration. The biological factors include the magnitude of epileptic discharge, its distribution over the cortex, depth of its source from the head surface, and the proportion of large pyramidal neurons tangentially oriented with respect to the head surface within the cortical area. The technical factors include the quality of the recording instrument such as the number of sensors and the use of gradiometer vs. magnetometer, the employed method of source analysis, and availability of experts in each institute. As far as the importance of ictal recording is emphasized, long-term video/EEG monitoring is of utmost importance. Thus, it is concluded that, once the epileptogenic focus is identified by the video/EEG monitoring, then MEG is superior to EEG in order to precisely localize the current source of the interictal epileptic discharge. Another question often addressed is whether MEG can replace the invasive intracranial EEG recording or not. In addition to the above-described factors, different coverage of the cortical areas by MEG vs. invasive intracranial EEG recording has to be taken into account to explain some of the recent reports related to this question. MEG can be effectively applied to the investigation of cortical functions near the epileptogenic focus. It is especially so when combined with other non-invasive studies like functional magnetic resonance imaging (fMRI). In addition to the source analysis of magnetic fields related to various events or tasks, analysis of the task-related change of rhythmic cortical oscillations is a useful tool for studying higher cortical functions such as language in the presurgical evaluation.  相似文献   

16.
Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation‐based cortical current density (VB‐SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit‐free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large‐scale brain networks of high clinical and scientific significance. Hum Brain Mapp, 2013. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Cortical source analysis of electroencephalographic (EEG) signals has become an important tool in the analysis of brain activity. The aim of source analysis is to reconstruct the cortical generators (sources) of the EEG signal recorded on the scalp. The quality of the source reconstruction relies on the accuracy of the forward problem, and consequently the inverse problem. An accurate forward solution is obtained when an appropriate imaging modality (i.e., structural magnetic resonance imaging – MRI) is used to describe the head geometry, precise electrode locations are identified with 3D maps of the sensor positions on the scalp, and realistic conductivity values are determined for each tissue type of the head model. Together these parameters contribute to the definition of realistic head models. Here, we describe the steps necessary to reconstruct the cortical generators of the EEG signal recorded on the scalp. We provide an example of source reconstruction of event-related potentials (ERPs) during a face-processing task performed by a 6-month-old infant. We discuss the adjustments necessary to perform source analysis with measures different from the ERPs. The proposed pipeline can be applied to the investigation of different cognitive tasks in both younger and older participants.  相似文献   

18.
Typical childhood absence seizures are associated with thalamic activation.   总被引:2,自引:0,他引:2  
Functional MRI with simultaneously acquired EEG (fMRI/EEG) can identify areas of signal change associated with interictal discharges. We report the fMRI/EEG study of a child with newly-diagnosed IGE, performed prior to the start of antiepileptic medication. The 7-years-old girl had very frequent absences, associated with eyelid myoclonia. Her EEG showed frequent, typical 3/sec discharges. Functional MRI was performed with a 3T scanner using whole brain gradient echo-planar imaging, and the EEG was recorded with 18, non-metallic, scalp electrodes. Ten bursts of generalized discharges were captured during 30 minutes fMRI/EEG acquisition. The bursts lasted 3.4 (SD +/- 0.6) seconds. Event-related analysis was performed with SPM2 and iBrain software. Functional MRI showed prominent, bilateral thalamic activation, and less pronounced areas of cortical activation and deactivation. This study demonstrates thalamic activation in typical, untreated childhood absence epilepsy. The cortical signal change may be related to a thalamo-cortical circuit.  相似文献   

19.
While age‐related volumetric changes in human hippocampal subfields have been reported, little is known about patterns of subfield functional connectivity (FC) in the context of healthy ageing. Here we investigated age‐related changes in patterns of FC down the anterior–posterior axis of each subfield. Using high resolution structural MRI we delineated the dentate gyrus (DG), CA fields (including separating DG from CA3), the subiculum, pre/parasubiculum, and the uncus in healthy young and older adults. We then used high resolution resting state functional MRI to measure FC in each group and to directly compare them. We first examined the FC of each subfield in its entirety, in terms of FC with other subfields and with neighboring cortical regions, namely, entorhinal, perirhinal, posterior parahippocampal, and retrosplenial cortices. Next, we analyzed subfield to subfield FC within different portions along the hippocampal anterior–posterior axis, and FC of each subfield portion with the neighboring cortical regions of interest. In general, the FC of the older adults was similar to that observed in the younger adults. We found that, as in the young group, the older group displayed intrinsic FC between the subfields that aligned with the tri‐synaptic circuit but also extended beyond it, and that FC between the subfields and neighboring cortical areas differed markedly along the anterior–posterior axis of each subfield. We observed only one significant difference between the young and older groups. Compared to the young group, the older participants had significantly reduced FC between the anterior CA1‐subiculum transition region and the transentorhinal cortex, two brain regions known to be disproportionately affected during the early stages of age‐related tau accumulation. Overall, these results contribute to ongoing efforts to characterize human hippocampal subfield connectivity, with implications for understanding hippocampal function and its modulation in the ageing brain.  相似文献   

20.
Video-electroencephalographic (EEG) ictal recordings play an important role in the pre-surgical evaluation of patients with medically refractory focal epilepsy. Paradoxical lateralization of the scalp EEG ictal onset patterns, consistently contralateral to the side of the proven epileptogenic lesion is rare but important to recognize, with possible implications on patient management. We searched the database of the University of Munich Epilepsy Monitoring Unit for patients with extratemporal epilepsies, with scalp EEG ictal patterns consistently contralateral to the proven epileptogenic zone. All available clinical, EEG and imaging data were reviewed. Dipole source analysis of EEG seizure onset was performed where possible. Four patients were identified, who had proven paradoxical lateralization of scalp EEG ictal patterns, demonstrated by seizure freedom after epilepsy surgery, data from invasive electroencephalography, or imaging and seizure semiology. Parasagittal lesions on MRI brain scan were found in three cases. Invasive recordings with subdural electrodes were performed in one patient. Dipole source analysis of EEG seizure onset was possible in two patients, helping to correctly lateralize the ictal EEG pattern in one patient. Patients with midline or near midline neocortical seizure foci may show paradoxical lateralization of the ictal EEG, likely due to the spatial orientation of the cortical generators in the medial regions of the cerebral hemispheres. These patients may have excellent surgical outcome despite the apparently discordant EEG findings, making this an important phenomenon to be recognized in clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号