首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We have previously shown in rats that estradiol has brain regionally specific effects on AMPA receptors. The present study investigated hormonal specificity of AMPA receptors by comparing the effect of estradiol with tamoxifen or raloxifene, which have varying effects on estrogen response in breast, bone and uterus. Ovariectomy in rats decreased uterus weight which was restored by estradiol treatment, whereas tamoxifen and raloxifene had only a weak effect. Ovariectomy left unchanged AMPA receptor specific binding in rat brain whereas estradiol, tamoxifen and raloxifene decreased it in cortical and striatal regions of ovariectomized rats. Hence, tamoxifen and raloxifene showed agonist estrogenic activity on AMPA receptors in specific brain regions, which can be dissociated from their antagonist estrogenic activity in the periphery.  相似文献   

2.
Estradiol was previously reported to decrease brain alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-receptor-specific binding. The contributions of estrogen receptor subtypes in the estradiol modulation of AMPA receptors and its predominant subunit GluR2 are unknown. These experiments investigated whether an estrogenic receptor subtype is involved in the estradiol effect on AMPA-receptor-specific binding and GluR2 mRNA levels. Ovariectomized Sprague-Dawley rats were treated 2 days after ovariectomy for 2 weeks with 17beta-estradiol, an agonist for ERalpha 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), or an agonist for ERbeta 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and compared with intact control rats. Uterus weights, used as aperipheral measure of estrogenic activity, were decreased after ovariectomy and increased by estradiol and PPT but not DPN treatments. In prefrontal and cingulate cortices, the striatum, and the nucleus accumbens, ovariectomy increased [3H]AMPA-specific binding compared with intact controls, which was corrected by estradiol treatment. In all these brain regions, PPT, but not DPN, mimicked the estradiol decrease of AMPA-receptor-specific binding; in the cingulate cortex, the effect of PPT did not reach statistical significance. GluR2 mRNA levels of vehicle-treated ovariectomized rats remained unchanged compared with intact rats in the brain regions investigated. Estradiol and PPT treatment but not DPN decreased GluR2 subunit mRNA levels in the prefrontal cortex and the striatum of ovariectomized rats, whereas no significant change was observed in the cingulate cortex or the nucleus accumbens. The present results suggest that an ERalpha is involved in the estradiol modulation of AMPA receptors in the cortex, striatum, and nucleus accumbens.  相似文献   

3.
We investigated the effect of 10 months ovariectomy and a correction therapy, 2 weeks before the rats were killed, of oestradiol, progesterone or their combination on NMDA and AMPA receptor binding in the hippocampus, dentate gyrus, striatum, nucleus accumbens and frontal cortex of the rat brain as well as on amino acid levels in frontal cortex. NMDA and AMPA binding densities were assayed by autoradiography using, respectively, L-[3H]glutamate and [3H]AMPA; amino acid concentrations were measured by high performance liquid chromatograhy (HPLC) coupled with UV detection. Ovariectomy was without effect on NMDA and AMPA binding density in all brain regions assayed except in the hippocampal CA1 region and dentate gyrus where it decreased NMDA binding density compared to intact rats values. Oestradiol restored and increased NMDA binding density in the CA1 subfield and the dentate gyrus of ovariectomized rats but, by contrast, it decreased binding density in the striatum and in the frontal cortex while having no effect in the CA2/3 subfield of the hippocampus and in the nucleus accumbens. Oestradiol was without effect on AMPA binding density in the hippocampus and the dentate gyrus but it reduced AMPA binding density in the striatum, the frontal cortex and the nucleus accumbens. Progesterone, and oestradiol combined with progesterone, decreased NMDA but not AMPA binding density in the frontal cortex of ovariectomized rats, and they were without effect on these receptors in the other brain regions assayed. Amino acid concentrations in the frontal cortex were unchanged after ovariectomy or steroid treatments. The effect of oestradiol in the hippocampus confirmed in the present study and our novel findings in the frontal cortex, striatum and nucleus accumbens may have functional significance for schizophrenia and neurodegenerative diseases.  相似文献   

4.
The effect of post-mortem delay on the stability of the protein subunits that combine to form NMDA and AMPA type glutamate receptors has been assessed in samples of human brain tissue. While most of the subunits (i.e. GluR1, GluR2/3, GluR4, NR1) appear to be stable for up to 18 h post-mortem, the NR2A and NR2B subunits appear to be proteolyzed rapidly following death. These results are consistent with the concept that the proteolytic products of NR2A and NR2B, although at smaller molecular sizes than the full-length protein, are all identifiable on Western blots. Thus, a method is proposed that allows for the estimation of the levels of these labile proteins even in samples obtained up to 18 h post-mortem. Using this method we have estimated the levels of all AMPA and NMDA receptor subunits in selected (i.e. hippocampus, frontal and entorhinal cortex) brain tissue samples obtained from control patients and patients who have died with Alzheimer's disease. Modest decreases in NMDA receptor subunits NR1, NR2A, and NR2B were found in the hippocampus and in frontal cortex while little or no change in any of these subunits were documented in entorhinal cortex. Subunits for AMPA receptors (GluR1, GluR2/3, and GluR4) appeared to show a generalized decrease in all these tissues. As a surrogate marker for overall decreases due to generalized neuronal cell death, levels of neuron-specific enolase were measured in all tissues and were found to be nearly identical in control and Alzheimer's brains.  相似文献   

5.
Estrogens modulate the expression of preproenkephalin (PPE) in the hypothalamus but little is known for other brain regions. The present study investigated the effect of hormonal withdrawal and replacement therapy on PPE expression in the striatum, nucleus accumbens and cortex. Ovariectomized Sprague-Dawley rats were treated for 2 weeks with estradiol, a specific ligand for estrogen receptor alpha (ERalpha), 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and estrogen receptor beta (ERbeta) 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), or the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene. Brain PPE mRNA levels, measured by in situ hybridization, were high in the striatum and nucleus accumbens compared to the low expression in the cortex. Ovariectomy decreased uterine weights compared to intact uterus, which was corrected by estradiol and PPT. Tamoxifen and raloxifene partially stimulated uterine weights while DPN left it unchanged. In the anterior, median and posterior striatum and in the core and shell of the nucleus accumbens, ovariectomy decreased PPE mRNA levels compared to intact rats, this was corrected by estradiol treatment except for the posterior striatum. PPT, DPN, tamoxifen and raloxifene reproduced the estradiol effect. In the prefrontal and cingulate cortices, neither ovariectomy nor treatments changed PPE mRNA levels. These results show for the first time that estradiol increases PPE mRNA in the striatum and nucleus accumbens. This effect is observed also with estrogen receptor agonists for the ERalpha and ERbeta as well as with SERMs.  相似文献   

6.
Numerous reports demonstrate the potency of estrogens to modulate brain function and their implications in schizophrenia and depression. The 5-HT(1A) receptor has been suggested to be implicated in depression and anxiety. Selective estrogen receptor modulators (SERMs), like tamoxifen and raloxifene, have estrogenic and/or antiestrogenic activity depending on the target tissue. Hence, SERMs have beneficial effects in skeleton and cardiovascular systems but act as antagonists in breast and uterus. The aim of the present study was thus to investigate in ovariectomized rats the effects of 17beta-estradiol, tamoxifen and raloxifene treatments on 5-HT(1A) receptor binding sites (agonist and antagonist) and mRNA levels in the hippocampal formation, prefrontal and cingulate cortex, as well as dorsal raphea nucleus which are known to express estrogen receptors (ER). Two weeks ovariectomy of female rats led to a 60% decrease of uterine weight, which was prevented by a 2-week 17beta-estradiol treatment; tamoxifen and raloxifene increased uterine weights by 35% and 15%, respectively, but significantly less than estradiol treatment. Specific binding to 5-HT(1A) receptors was determined by autoradiography of brain sections using the selective ligands: [3H]8-OH-DPAT and [3H]MPPF. Ovariectomy and hormone replacement therapy did not significantly affect 5-HT(1A) receptor agonist and antagonist specific binding sites as well as mRNA levels in all subregions of the hippocampus, prefrontal and cingulate cortex as well as dorsal raphea nucleus. Although the present treatments had functional effects as assessed with uterine weights, ovariectomy and estrogen-receptor directed drugs had no effect on hippocampal 5-HT(1A) receptors as compared to 5-HT(2A) receptors previously reported.  相似文献   

7.
OBJECTIVE: Multiple quantifiable biologic abnormalities have been localized to the hippocampus in schizophrenia. Alterations in glutamate-mediated transmission at N-methyl-D-aspartic acid (NMDA)-sensitive receptors in hippocampus have been implicated in the pathophysiology of the illness. The authors tested the hypothesis that glutamatergic transmission within and efferent from hippocampus is altered in schizophrenia. METHOD: The authors analyzed postmortem hippocampal tissue from individuals with schizophrenia and from healthy individuals. The tissue samples had been collected by two brain tissue banks, one in Maryland and the other in Melbourne, Australia. lonotropic receptor binding for the NMDA, kainate, and (3)H-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA) receptors was quantified by using usual radioligand techniques. In situ hybridization autoradiography was used to quantify mRNA for the NMDA receptor subunits NR1, NR2A, and NR2B. RESULTS: Ligand binding to the ionotropic glutamate receptors (NMDA, kainate, and AMPA) did not differ significantly overall or in any subregion between the schizophrenia tissue and the healthy comparison tissue. The only exception was AMPA receptor binding in hippocampal subregion CA2, which was slightly but significantly less in schizophrenia. However, the level of mRNA for the NMDA receptor subunits NR1 and NR2B was significantly different between groups; in several hippocampal subregions, the level of NR1 mRNA was lower and the level of NR2B mRNA higher in schizophrenia. CONCLUSIONS: Because the NR1 subunit of the NMDA receptor is critical to full receptor activity, a reduction of NR1 in hippocampus in schizophrenia suggests a functional impairment in glutamatergic transmission at the NMDA receptor, resulting in reduced glutamatergic transmission within and possibly efferent from the hippocampus in schizophrenia. This defect could underlie a hypoglutamatergic state in regions of limbic cortex, consistent with published results from other lines of research in schizophrenia.  相似文献   

8.
9.
Wang WW  Cao R  Rao ZR  Chen LW 《Brain research》2004,998(2):174-183
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.  相似文献   

10.
D-myo-inositol 1,2,3,4,5,6-hexakisphosphate (InsP6), one of the most abundant inositol phosphates within cells, has been proposed to play a key role in vesicle trafficking and receptor compartmentalization. In the present study, we used in vitro receptor autoradiography, subcellular fractionation, and immunoblotting to investigate its effects on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Qualitative and quantitative analysis of 3H-AMPA binding indicated that incubation of frozen-thawed brain sections with InsP6 at 35 degrees C enhanced AMPA receptor binding in several brain regions, with maximal increases in the hippocampus and cerebellum. Moreover, saturation kinetics demonstrated that InsP6-induced augmentation of AMPA binding was due to an increment in the maximal number of AMPA binding sites. At the immunological level, Western blots performed on crude mitochondrial/synaptic (P2) fractions revealed that InsP6 (but not InsP5 and InsP3) treatment increased glutamate receptor (GluR)1 and GluR2 subunits of AMPA receptors, an effect that was associated with concomitant reductions in microsomal (P3) fractions. Interestingly, the InsP6-induced modulation of AMPA receptor binding was blocked at room temperature, and pretreatment with heparin also dampered its action on both AMPA receptor binding and GluR subunits. These effects of InsP6 appear to be specific to AMPA receptors, as neither 3H-glutamate binding to NMDA receptors nor levels of NR1 and NR2A subunits in P2 and P3 fractions were affected. Taken together, our data strongly suggest that InsP6 specifically regulates AMPA receptor distribution, possibly through a clathrin-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号