首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Apart from several growth factors which play a crucial role in the survival and development of the central and peripheral nervous systems, thyroid hormones can affect different processes involved in the differentiation and maturation of neurons. The present study was initiated to determine whether triiodothyronine (T3) affects the survival and neurite outgrowth of primary sensory neurons in vitro. Dorsal root ganglia (DRG) from 19-day-old embryos or newborn rats were plated in explant or dissociated cell cultures. The effect of T3 on neuron survival was tested, either in mixed DRG cell cultures, where neurons grow with non-neuronal cells, or in neuron-enriched cultures where non-neuronal cells were eliminated at the outset. T3, in physiological concentrations, promoted the growth of neurons in mixed DRG cell cultures as well as in neuron-enriched cultures without added nerve growth factor (NGF). Since neuron survival in neuron-enriched cultures cannot be promoted by endogenous neurotrophic factors synthesized by non-neuronal cells, the increased number of surviving neurons was due to a direct trophic action of T3. Another trophic effect was revealed in this study: T3 sustained the neurite outgrowth of sensory neurons in DRG explants. The stimulatory effect of T3 on nerve fibre outgrowth was considerably reduced when non-neuronal cell proliferation was inhibited by the antimitotic agent cytosine arabinoside, and was completely suppressed when the great majority of non-neuronal cells were eliminated in neuron-enriched cultures. These results indicate that the stimulatory effect of T3 on neurite outgrowth is mediated through non-neuronal cells. It is conceivable that T3 up-regulates Schwann cell expression of a neurotrophic factor, which in turn stimulates axon growth of sensory neurons. Together, these results demonstrate that T3 promotes both survival and neurite outgrowth of primary sensory neurons in DRG cell cultures. The trophic actions of T3 on neuron survival and neurite outgrowth operate under two different pathways.  相似文献   

2.
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.  相似文献   

3.
We examined the effect of non-neuronal cells on somatostatin release from cultured cerebral cortical cells. Three culture models were used: (1) neuron-enriched cultures obtained from cortex of 17-day-old rat embryos and exposed to 10 microM cytosine arabinoside (Ara C) for 48 h between days 3 and 5 after plating; (2) whole cell cultures obtained by using the same protocol but untreated with Ara C; (3) glial primary cultures obtained from newborn rats. We studied: (i) the cellular composition of the cultures by using two astroglial markers: vimentin and glial fibrillary acidic protein (GFAP); (ii) the spontaneous and forskolin-stimulated somatostatin release. In 8-day-old cultures morphological data revealed that Ara C treatment reduced glial cells to 6%. At 7 and 10 days of culture somatostatin spontaneously released from Ara C-treated cells was higher than that measured from untreated cells. On the 17th day of culture, neuron-enriched cultures contained a lower amount of somatostatin than whole cell cultures. Forskolin elicited a dose-dependent release of somatostatin from whole cell cultures, but had no effect on neuron-enriched cultures. Astroglial released media (ARM) from glial primary cultures exposed to forskolin for 20 min induced somatostatin release from neuron-enriched cultures. HPLC analysis of endogenous amino acids of ARM showed that glutamate, glutamine, glycine and alanine were significantly increased after forskolin stimulation. Our results suggest a functional interaction between glial cells and neurons secreting somatostatin.  相似文献   

4.
It is unknown whether adult dorsal root ganglion (DRG) neurons require trophic factors for their survival and maintenance of neuropeptide phenotypes. We have established and characterized neuron-enriched cultures of adult rat DRGs and investigated their responses to nerve growth factor (NGF), ciliary neuronotrophic factor (CNTF), pig brain extract (PBE, crude fraction of brain-derived neuronotrophic factor, BDNF), and laminin (LN). DRGs were dissected from levels C1 through L6 and dissociated and freed from myelin fragments and most satellite (S-100-immunoreactive) cells by centrifugation on Percoll and preplating. The enriched neurons, characterized by their morphology and immunoreactivity for neuron-specific enolase, constituted a population representative of the in vivo situation with regard to expression of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) immunoreactivities. In the absence of trophic factors and using polyornithine (PORN) as a substratum, 60-70% of the neurons present initially (0.5 days) had died after 7 days. LN as a substratum did not prevent a 30% loss of neurons up to day 4.5, but it subsequently maintained DRG neurons at a plateau. This behavior might reflect a cotrophic effect of LN and factors provided by non-neuronal cells, whose proliferation between 4.5 and 7 days could not be prevented by addition of mitotic inhibitors of gamma-irradiation. CNTF, but not NGF, slightly enhanced survival at 7 days on either PORN or LN. No neuronal losses were found in non-enriched cultures or when enriched neurons were supplemented with PBE, indicating that non-neuronal cells and PBE provide factor(s) essential for adult DRG neuron survival. Proportions of SP-, SOM-, and CCK-immunoreactive cells were unaltered under any experimental condition, with the exception of a numerical decline in SP cells in 7-day cultures with LN, but not PORN, as the substratum. Our data, considered in the context of recent in vivo and vitro studies, suggest that a combination of trophic factors or an unidentified factor, rather than the established molecules NGF, CNTF, and BDNF, which address embryonic and neonatal DRG neurons, are required for the in vitro maintenance of adult DRG neurons.  相似文献   

5.
Primary cultures of astroglial cells and of neurons obtained from chick embryos were grown in culture medium with and without serum added. The expression of glutamine synthetase (GS) in the cultured nerve cells was investigated immunocytochemically and biochemically. The cellular localization of GS in cerebellar tissue sections and in cerebral cortex of chick embryos was investigated by immunohistochemical staining. In tissue sections the enzyme is only present in astrocytes and their processes; neurons and their structures do not express the enzyme. In contrast, in pure neuronal primary cultures, a high level of GS was detected by biochemical and immunochemical methods. Thus, our results clearly indicate the presence of GS in pure neuronal cell cultures and its absence in this type of cells in vivo. Removal of serum from the culture medium enhanced GS levels in primary astrocyte cultures, but was without effect on GS activity in neurons. Addition of calf serum to the culture medium induces a two-fold increase of cellular lactate dehydrogenase (LDH) activity in neurons by increasing specifically the M subunit containing isoenzymes. The sensitivity of chick astroglial cells and neurons toward the GS inducing effect of hydrocortisone and modulation of its effect by serum was also investigated. Differences in the sensitivity of the two types of nerve cells in culture toward the GS inducing effect of hydrocortisone, and the effect of serum could be demonstrated.  相似文献   

6.
Primary sensory neurons which innervate neuromuscular spindles in the chicken are calbindin-immunoreactive. The influence exerted by developing skeletal muscle on the expression of calbindin immunoreactivity by subpopulations of dorsal root ganglion (DRG) cells in the chick embryo was tested in vitro in coculture with myoblasts, in conditioned medium (CM) prepared from myoblasts and in control cultures of DRG cells alone. Control cultures of DRG cells grown at the 6th embryonic day (E6) did not show any calbindin-immunostained ganglion cell. In coculture of myoblasts previously grown for 14 days, about 3% of calbindin-immunoreactive ganglion cells were detected while about 1% were observed in some cultures grown in CM. Fibroblasts from various sources were devoid of effect. Skin or kidney cells were more active than myoblasts to initiate calbindin expression by subpopulations of DRG cells in coculture or, to a lesser degree, in CM. The results suggest that cellular factors would rather induce calbindin expression in certain sensory neurons than ensure a selective neuronal survival.  相似文献   

7.
M E Eichler  K M Rich 《Brain research》1989,482(2):340-346
The time course of dependence on nerve growth factor (NGF) for survival in sensory neurons in vitro was examined with microscopic and biochemical methods. Primary dorsal root ganglion (DRG) cultures from embryonic-day-15 (E-15) and day-19 (E-19) rats were maintained with standard dissociated cell culture techniques in the absence of most non-neuronal cells. After various times in culture, neurons were acutely deprived of neurotrophic support by changing to NGF-free medium and adding NGF antiserum to eliminate any residual NGF. Neuronal cultures were examined with phase microscopy; and, their metabolic activity was measured with a protein assay at various time points after NGF deprivation. E-15 neurons grown in culture for 5 days were exquisitely sensitive to acute NGF deprivation. By 12 h after NGF deprivation, neuronal morphology was severely disrupted and the majority of neurons appeared dead. E-15 neurons grown in culture for 8 or 11 days showed progressively less dependence on NGF for survival. These older neurons did not die until 24 and 48 h, respectively, following NGF withdrawal. Neurons grown in culture for 20 days did not show any morphologic changes by phase microscopy up to 4 days after NGF deprivation. Protein incorporation progressively decreased between 12 and 48 h after NGF withdrawal in E-15 neurons grown in culture for 5, 8, or 11 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Neuron-glia cocultures were prepared using, as a source for glial cells, either C6 glia (2B clone) of early (2B23) or late (2B111) passages or advanced passages of glial cells derived from primary cultures prepared from aged mouse cerebral hemispheres (MACH). Six-day-old chick embryo cerebral hemispheres (E6CH) were the source of neuron-enriched cultures. Glutamine synthetase (GS) activity was used as a marker for astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity was used as a marker for oligodendrocytes. GS activity was markedly enhanced in cocultures of E6CH neurons and 2B23 glioblastic cells, whereas GS activity was reduced in cocultures of E6CH neurons and 2B111 astrocytic glia. In contrast, CNP activity was enhanced in cocultures of C6 glial cells with E6CH neurons. Glial cells from aged mouse brain did not respond to coculturing with E6CH neurons. It appears from these findings that neuronal input enhances the differentiation of glioblastic cells to either astrocytic or oligodendrocytic expression, whereas it decreases the activity of committed astrocytes. In contrast, glial cells from aged mouse brain do not respond to neuronal input. Choline acetyltransferase (ChAT) activity, a marker for cholinergic neurons, was enhanced only when E6CH cultures were grown in conditioned medium (CM) from 2B23 glioblastic cells. In contrast, ChAT activity was markedly diminished when E6CH neurons were cocultured with MACH glial cells but not when grown in CM from MACH glial cells. Thus, humoral factors from immature glial cells appear to enhance cholinergic neuronal phenotypic expression whereas cell-cell membrane contacts with aged glial cells diminish cholinergic phenotypic expression. The findings present supportive evidence that neuron-glia interrelationships are age dependent.  相似文献   

9.
During embryonic life, avian sensory ganglia contain cells with the potential to express, under appropriate experimental conditions, a number of properties characteristic of autonomic sympathetic neurons. Thus, cells capable of synthesizing noradrenaline (NA) from tyrosine differentiate when dorsal root ganglia (DRG) from 10-15 d embryonic quail are grown in culture (Xue et al., 1985a, b). In the present study, we show that cultures of DRG from 10 d embryos can take up 3H-NA by a high-affinity (Km = 1.0 microM), temperature-dependent process that can be inhibited by desmethylimipramine. By means of combined immunocytochemistry and autoradiography, it was demonstrated that the majority (70-80%) of the tyrosine hydroxylase (TH)-immunoreactive cells that developed in the cultures possessed a transport system for NA. Catecholamine (CA) uptake also occurred in a small, but relatively constant, number of TH-negative cells, but was absent from substance P-containing neurons. In contrast to TH, which appears only after 3-4 d in vitro, cells capable of taking up NA with high affinity were found in DRG cultures after only a few hours, and a small number (less than 0.5% of the total cell population) was detected in freshly removed, uncultured ganglia. Such cells did not react with antibodies directed against substance P or neurofilament proteins. We conclude that autonomic precursors are identifiable in a subset of non-neuronal DRG cells, prior to full expression of a noradrenergic phenotype, by their possession of a high-affinity uptake system for CA.  相似文献   

10.
A specific intercellular interaction has been demonstrated between neuronal and non-neuronal cells that appears to increase the rate of non-neuronal cell proliferation. Isolated and recombined primary cultures of both cell types were prepared from 11-day embryonic chick sympathetic ganglia by a method recently developed in this laboratory. When non-dividing neurons were added to an equal number of proliferating non-neuronal cells, the amount of [methyl-3H]thymidine incorporated by these mixed cultures was 230% greater than that incorporated by 99% pure non-neuronal cultures. Removal of all neurons from such non-neuronal cultures by a 48-h preincubation without nerve growth factor resulted in an even greater increase in [3H]thymidine incorporation upon addition of neurons (370%). When increasing numbers of isolated neurons were added to non-neuronal cell cultures, the amount of [3H]thymidine incorporation initially increased in a dose-dependent fashion until it reached a plateau. In contrast, the addition of increasing numbers of non-neuronal cells to a constant number of neurons resulted in a linear increase in [3H]thymidine incorporation. In some cases neurons and non-neuronal cells were not grown in direct physical contact but were only allowed to communicate with one another through the culture medium. Such indirect communication never resulted in a stimulation of [3H]thymidine incorporation. When neurons were added to cultures of embryonic chick fibroblasts, the neurons grew well but did not stimulate [3H]thymidine incorporation by the fibroblasts. These results suggest that embryonic sympathetic neurons selectively stimulate the proliferation of non-neuronal cells derived from the same source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号